1
|
Fu Y, Ye F, Zhang X, He Y, Li X, Tang Y, Wang J, Gao D. Decrease in Tumor Interstitial Pressure for Enhanced Drug Intratumoral Delivery and Synergistic Tumor Therapy. ACS NANO 2022; 16:18376-18389. [PMID: 36355037 DOI: 10.1021/acsnano.2c06356] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Currently, one of the main reasons for the ineffectiveness of tumor treatment is that the abnormally high tumor interstitial pressure (TIP) hinders the delivery of drugs to the tumor center and promotes intratumoral cell survival and metastasis. Herein, we designed a "nanomotor" by in situ growth of Ag2S nanoparticles on the surface of ultrathin WS2 to fabricate Z-scheme photocatalytic drug AWS@M, which could rapidly enter tumors by splitting water in interstitial liquid to reduce TIP, along with O2 generation. Moreover, the O2 would be further converted to reactive oxygen species (ROS), accompanied by increased local temperature of tumors, and the combination of ROS with thermotherapy could eliminate the deep tumor cells. Therefore, the "nanomotor'' could effectively reduce the TIP levels of cervical cancer and pancreatic cancer (degradation rates of 40.2% and 36.1%, respectively) under 660 nm laser irradiation, further enhance intratumor drug delivery, and inhibit tumor growth (inhibition ratio 95.83% and 87.61%, respectively), and the related mechanism in vivo was explored. This work achieves efficiently photocatalytic water-splitting in tumor interstitial fluid to reduce TIP by the nanomotor, which addresses the bottleneck problem of blocking of intratumor drug delivery, and provides a general strategy for effectively inhibiting tumor growth.
Collapse
Affiliation(s)
- Yihan Fu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Fei Ye
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Yongfu Tang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao066004, P. R. China
| |
Collapse
|
2
|
Kundu J, Mal DD, Pradhan D. Single-step solvothermal synthesis of highly uniform Cd xZn 1−xS nanospheres for improved visible light photocatalytic hydrogen generation. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00531b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single step synthesis of a solid solution of CdxZn1−xS is demonstrated with optimum Cd and Zn percentage for enhanced photocatalytic hydrogen generation under visible light.
Collapse
Affiliation(s)
- Joyjit Kundu
- Materials Science Centre
- Indian Institute of Technology
- Kharagpur
- India
| | | | - Debabrata Pradhan
- Materials Science Centre
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
3
|
Kundu J, Satpathy BK, Pradhan D. Composition-Controlled CdS/ZnS Heterostructure Nanocomposites for Efficient Visible Light Photocatalytic Hydrogen Generation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03764] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Weng B, Qi MY, Han C, Tang ZR, Xu YJ. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00313] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bo Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Sumesh CK, Peter SC. Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans 2019; 48:12772-12802. [DOI: 10.1039/c9dt01581g] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent research and development is focused in an intensive manner to increase the efficiency of solar energy conversion into electrical energy via photovoltaics and photo-electrochemical reactions.
Collapse
Affiliation(s)
- C. K. Sumesh
- Department of Physical Sciences
- P. D. Patel Institute of Applied Sciences
- Charotar University of Science and Technology (CHARUSAT)
- Changa-388421
- India
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|