1
|
Ou X, He M, Chen B, Hu B. Covalent organic frameworks based hierarchical porous hybrid monolithic capillary: Synthesis, characterization, and applications in trace metals analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132680. [PMID: 37832443 DOI: 10.1016/j.jhazmat.2023.132680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The preparation of hierarchical porous monolithic column with high covalent organic frameworks (COF) loading and micropores accessibility is challenging due to the easy aggregability and sedimentation of COFs. Herein, a novel strategy based on high internal phase emulsion (HIPE) polymerization was proposed for preparing COF hybrid capillary monolithic column with hierarchical porosity. COFs with different frameworks including imine COFs (COF-OMe, COF-F and COF-SH), triazine COF (CTF-1) and boron-based COF (COF-5) were selected to investigate the universality of the preparation strategy. The presence of COF in the monolithic capillary was confirmed by scanning electron microscope, X-ray diffraction and fourier transform infrared spectroscopy. Nitrogen adsorption/desorption experiments and thermogravimetric analysis showed that the prepared COF hybrid monolithic capillary exhibited high COF loading (e.g., 28.7% for COF-SH) and accessibility (e.g., 98.5% for COF-SH), mainly due to the thin walls of void-window structures originated from polymerization of HIPE. The successful preparation of water-stable COF-F, COF-OMe, COF-SH and CTF-1 hybrid monolithic columns demonstrated the proposed synthesis strategy is universal to water-stable COF without tedious optimization of dispersion system, effectively avoiding the sedimentation of COF in pre-polymerization solution. Then, the sulfhydryl-modified COF hybrid polymer (poly(COF-SH-HIPE)) monolithic column was evaluated for the extraction of heavy metal ions, and a method based on poly(COF-SH-HIPE) monolithic capillary microextraction on-line coupled with inductively coupled plasma mass spectrometry detection was developed for analysis of trace Cd, Hg and Pb in human fluid samples.
Collapse
Affiliation(s)
- Xiaoxiao Ou
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Huang J, Chen Y, Hou L, Lin T. A methylene blue-functionalized DNA concatemer for the construction of a turn-off fluorescent immunosensor for the sensitive detection of carcinoembryonic antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4215-4219. [PMID: 37563992 DOI: 10.1039/d2ay01685k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This study showed a method of synthetization of a methylene blue-functionalized DNA concatemer via hybridization chain reaction (HCR) used for turn-off fluorescence detection of carcinoembryonic antigen (CEA). During the experiments, CEA aptamers and the methylene blue-functionalized DNA concatemer were modified onto the surface of Au nanoparticles (AuNPs). By detecting the signal of remaining methylene blue in the solution that has not been embedded in the DNA concatemer, we obtained an amplified decrease of the fluorescence signal at 695 nm for CEA. The linear range was from 0.1 to 80 ng mL-1 with a limit of detection at 75 pg mL-1 for CEA determination. Our results showed that the proposed method had good selectivity and could generate satisfactory results for clinical serum sample determination. Based on the positive outcomes obtained, we determined that the method provided a sensitive and accurate way for early clinical diagnosis of cancer disease.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yanling Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
3
|
Liu J, Wang J, Wang Y, Wang Y. Covalent organic frameworks as advanced materials in the application of chemical detection. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junyan Liu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Junfeng Wang
- Department of Otolaryngology & Head and Neck Surgery Affiliated Hospital of Yangzhou University Yangzhou China
| | - Ying Wang
- Department of Oncology Affiliated Hospital of Yangzhou University Yangzhou China
| | - Yang Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
4
|
Khalil S, Meyer MD, Alazmi A, Samani MHK, Huang PC, Barnes M, Marciel AB, Verduzco R. Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis. ACS NANO 2022; 16:20964-20974. [PMID: 36413762 DOI: 10.1021/acsnano.2c08580] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.
Collapse
Affiliation(s)
- Safiya Khalil
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abdullah Alazmi
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Mohammad H K Samani
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Po-Chun Huang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Morgan Barnes
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-364, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-364, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Wang J, Hao Y, Ni B, Sun J, Wu X, Lin X. Covalent organic framework-based monolithic column with hydrophilic and π-π stacking interaction for efficient in-tube solid-phase microextraction of synthetic phenolic antioxidants. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
7
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
8
|
Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M. Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116208] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
LI Z, LI N, ZHAO T, ZHANG Z, WANG M. [Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment]. Se Pu 2021; 39:229-240. [PMID: 34227305 PMCID: PMC9403804 DOI: 10.3724/sp.j.1123.2020.05030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
Polymeric monolithic columns are fabricated by in situ polymerization of the corresponding monomer, crosslinkers, porogenic solvents and radical initiators within a mold. Compared with the conventional packed solid phase extraction adsorbents, polymeric monolithic columns with a continuous porous structure process distinctive advantages of rapid mass transfer and excellent permeability, which facilitates the extraction of trace amounts of the target from the matrix even at high flow velocities. Besides, these materials can be easily fabricated in situ within various cartridges, avoiding a further packing step associated with packed particulate adsorbents. Additionally, the abundant monomer availability, flexible porous structure, and wide applicable pH range make monoliths versatile for use in separation science. Thus, polymeric monolithic columns have been increasingly applied as efficient and promising extraction media for sample pretreatment food, pharmaceutical, biological and environmental analyses. However, these materials usually have the difficulty in morphology control and their interconnected porous micro-globular structure, which may result in low porosity, limited specific surface area and poor efficiency. In addition, polymeric monoliths suffer from the swelling in organic solvents, thus decreasing the service life and precision while increasing the cost consumption. Recently, the development of nanomaterial-incorporated polymeric monoliths with an improved ordered structure, enhanced adsorption efficiency and outstanding selectivity has attracted considerable attention. Nanoparticles are considered as particulates within the size range of 1-100 nm in at least one dimension, which endows them with unique optical, electrical and magnetic properties. These materials have a large surface area, excellent thermal and chemical stabilities, remarkable versatility, as well as a wide variety of active functional groups on their surface. With the aim of exploiting these advantages, researchers have shown great interest in applying nanomaterial-incorporated polymeric monoliths to separation science. Accordingly, significant progress has been achieved in this field. Nanomaterials can be entrapped via the direct synthesis of a polymerization solution that contains well dispersed nanomaterials in porogens. In addition, nanoparticles can be incorporated into the monolithic matrix by copolymerization and post-polymerization modification via specific interactions. Therefore, nanomaterial-incorporated polymeric monoliths combined the different shapes, chemical properties, and physical properties of the polymers with those of the nanoparticles. The presence of nanoparticles can improve the structural rigidity as well as the thermal and chemical stabilities of monolithic adsorbents. Besides, nanoparticles are capable of increasing the specific surface area and providing multiple active sites, which leads to enhanced extraction performance and selectivity of polymeric monolithic materials. In recent years, diverse types of nanomaterials, such as carbonaceous nanoparticles, metallic materials and metal oxides, metal-organic frameworks, covalent organic frameworks and inorganic nanoparticles have been extensively explored as hybrid adsorbents in the modes of solid phase extraction, solid phase microextraction, stir bar sorption extraction and on-line solid phase extraction. This review specifically summarizes the fabrication methods for nanomaterial incorporated polymeric monoliths and their application to the field of sample pretreatment. The existing challenges and future possible perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Ziling LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Na LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tengwen ZHAO
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyang ZHANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman WANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
10
|
Ba Y, Zhang J, Sun Y, Liu Y, Yang H, Kong J. Novel fluorescent biosensor for carcinoembryonic antigen determination via atom transfer radical polymerization with a macroinitiator. NEW J CHEM 2021. [DOI: 10.1039/d0nj05822j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel fluorescence method for CEA via β-CD and BIBB-initiated atom transfer radical polymerization (ATRP) was reported.
Collapse
Affiliation(s)
- Yanyan Ba
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jingyu Zhang
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Yuzhi Sun
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Yanju Liu
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Huaixia Yang
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
11
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
12
|
Huang L, Miao J, Shuai Q. Carboxyl-functionalized magnetic porous organic polymers as efficient adsorbent for wastewater remediation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Li S, Liang Q, Ahmed SAH, Zhang J. Simultaneous Determination of Five Benzimidazoles in Agricultural Foods by Core-Shell Magnetic Covalent Organic Framework Nanoparticle–Based Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01708-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
He M, Ou X, Wang Y, Chen Z, Li D, Chen B, Hu B. Porous organic frameworks-based (micro)extraction. J Chromatogr A 2020; 1609:460477. [DOI: 10.1016/j.chroma.2019.460477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
|
15
|
Aptamer-gold nanoparticle doped covalent organic framework followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for selective enrichment and detection of human insulin. J Chromatogr A 2019; 1615:460741. [PMID: 31810620 DOI: 10.1016/j.chroma.2019.460741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
In this work, we introduced an aptamer modified Au nanoparticles doped covalent organic frameworks composite (IBAs-AuNPs/COF) to improve the property of selective enrichment of insulin from serum samples. The Au nanoparticles were immobilized on imine-based COF by in-situ reduction reaction via mussel inspired polydopamine coating, and then sulfhydryl-containing aptamers were bonded to the surface of AuNPs through an Au-S linkage. Due to the excellent adsorption property of COF and specific recognition between insulin and IBAs, the IBAs-AuNPs/COF composites show selective and satisfactory extraction property to insulin in serum samples. Excellent specifity was obtained for insulin in the presence of 50-fold interfering substances including human immunoglobulin, lysozyme and biotin. The concentrations of insulin in the range of 1.0 to 50.0 μg L-1 show good linear relationship (R2 = 0.9917) with limit of detection and limit of quantitation of 0.28 μg L-1 and 0.93 μg L-1, respectively. Then, the IBAs-AuNPs/COF composites were applied to enrich insulin in serum samples followed by analysis with matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). After the recovery experiment, the developed method shows good recoveries in range of 91.6%-112.4% with low RSD value (2.4%-9.4%, n = 3) for diabetic and healthy serum samples. The developed IBAs-AuNPs/COF composites propose a new perspective for selective and efficient enrichment of biomarkers in serum samples by functionalized COF.
Collapse
|
16
|
Hybrid monoliths with metal-organic frameworks in spin columns for extraction of non-steroidal drugs prior to their quantitation by reversed-phase HPLC. Mikrochim Acta 2019; 186:759. [DOI: 10.1007/s00604-019-3923-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/12/2019] [Indexed: 12/31/2022]
|
17
|
Covalent organic framework incorporated chiral polymer monoliths for capillary electrochromatography. J Chromatogr A 2019; 1602:481-488. [PMID: 31230876 DOI: 10.1016/j.chroma.2019.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
Abstract
A covalent organic framework, Schiff base network-1 (SNW-1), was synthesized and incorporated into cellulase based poly(glycidyl methacrylate-co-ethylene dimethacrylate) (cellulase@poly(GMA-EDMA-SNW-1)) monolith to afford a novel chiral stationary phase for capillary electrochromatography (CEC). SNW-1 is attractive as a stationary phase for CEC because it not only features high surface areas but also provides conjugate structures and abundant amine groups to give π-π electrostatic stacking and hydrogen bonding property. Incorporation of SNW-1 into monolithic column could improve the column efficiency and increase the interactions between the tested racemates and the stationary phase thus significantly improved their CEC separation. The obtained monoliths were characterized by scanning electron microscopy, elemental analysis and nitrogen adsorption. Moreover, effects of SNW-1 concentration, immobilization pH of cellulase and CEC conditions were also investigated. Under the optimized conditions, the cellulase@poly(GMA-EDMA-SNW-1) monolith exhibited excellent enantioseparation performance for eight pairs of different classes of chiral drugs including β-blockers, antihistamines and anticoagulants. Satisfactory repeatability was achieved with relative standard deviations for intra-day, inter-day and column-to-column runs less than 4.5%, and batch-to-batch runs less than 6.8%. The experiment results reveal that the combination of the versatile features of monoliths and unique properties of SNW-1 could be a promising strategy for chiral separation.
Collapse
|
18
|
|
19
|
Maya F, Paull B. Recent strategies to enhance the performance of polymer monoliths for analytical separations. J Sep Sci 2019; 42:1564-1576. [DOI: 10.1002/jssc.201801126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| |
Collapse
|
20
|
Wang H, Tan J, Shang X, Zheng X, Liu X, Wang J, Hou X, Du Y. Porous organic cage incorporated monoliths for solid-phase extraction coupled with liquid chromatography-mass spectrometry for identification of ecdysteroids from Chenopodium quinoa Willd. J Chromatogr A 2018; 1583:55-62. [PMID: 30477713 DOI: 10.1016/j.chroma.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Here, a porous organic cage (POC)-incorporated polymeric monolith was fabricated in a syringe through the introduction of the POC into poly(ethylene glycol dimethacrylate) monolith in a one-step traditional free-radical polymerization proceess. The resulting monolithic phases were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), nitrogen adsorption/desorption experiments and thermogravimetric analysis (TGA), which confirmed the successful incorporation of the POC in the monolithic matrix. The functionality of the POC-incorporated poly(EDMA) monolith facilitated for the solid phase extraction (SPE) of 20-hydroxecdysone (an ecdysteroid) from Chenopodium quinoa Willd. extract coupled with UPLC-QqQ-MS/MS, exhibiting satisfactory accuracy (93-106%), precision (< 6.5%) and reusability. In addition, UPLC-Q-Exactive-Orbitrap-MS/MS analysis of the quinoa sample after SPE by POC-incorporated monolith provided the identification of 20-hydroxecdysone and three other ecdysteroids. These results demonstrate the potential of POC-incorporated monoliths for the SPE of ecdysteroids from complex plant systems.
Collapse
Affiliation(s)
- Hongwei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China; Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianeng Tan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xianchao Shang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Zheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinmin Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|