1
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
2
|
Yeasmin S, Ullah A, Wu B, Zhang X, Cheng LJ. Hybrid Functional Polymer-Enabled Multiplexed Chemosensor Patch for Wearable Adrenocortex Stress Profiling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50034-50046. [PMID: 37851924 DOI: 10.1021/acsami.3c11374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Measuring bioactive stress hormones, including cortisol and dehydroepiandrosterone (DHEA), allows for evaluating the hypothalamic-pituitary-adrenal (HPA) axis functioning, offering valuable insights into an individual's stress response through adrenocortex stress profiles (ASPs). Conventional methods for detecting steroid hormones involve sample collections and competitive immunoassays, which suffer from drawbacks such as time-consuming labeling and binding procedures, reliance on unstable biological receptors, and the need for sophisticated instruments. Here, we report a label-free and external redox reagent-free amperometric assay directly detecting sweat cortisol and DHEA levels on the skin. The approach utilizes multitarget sensors based on redox-active molecularly imprinted polymers (redox MIPs) capable of selectively binding cortisol and DHEA, inducing changes in electrochemical redox features. The redox MIP consists of imprinted cavities for specific capture of cortisol or DHEA in a poly(pyrrole-co-(dimethylamino)pyrrole) copolymer containing hydrophobic moieties to enhance affinity toward steroid hormones. The polymer matrix also incorporates covalently linked interpenetrating redox-active polyvinylferrocene, offering a stable electrochemical redox feature that enables sensitive current change in response to the target capture in the vicinity. The multiplexed sensor detects cortisol and DHEA within 5 min, with detection limits of 115 and 390 pM, respectively. Through the integration of redox MIP sensors into a wireless wearable sensing system, we successfully achieved ambulatory detection of these two steroid hormones in sweat directly on the skin. The new sensing method facilitates rapid, robust determination of the cortisol-DHEA ratio, providing a promising avenue for point-of-care assessment of an individual's physiological state.
Collapse
Affiliation(s)
- Sanjida Yeasmin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ahasan Ullah
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xueqiao Zhang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Li-Jing Cheng
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Alizadeh T, Karimi SZ. A novel enzyme-less uric acid voltammetric sensor based on highly selective nano-imprinted polymer synthesized utilizing [tetrabutyl ammonium]+-[urate]− ion-pair complex as template. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Alizadeh T, Mousavi Z. Molecularly imprinted polymer specific to creatinine complex with copper(II) ions for voltammetric determination of creatinine. Mikrochim Acta 2022; 189:393. [PMID: 36151400 DOI: 10.1007/s00604-022-05470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 05/31/2023]
Abstract
Synthesis of creatinine-imprinted polymer is challenging because of its insolubility in aprotic solvents, traditionally utilized for synthesizing molecularly imprinted polymer (MIP). Moreover, creatinine is not electroactive at conventional electrodes, and thus, introducing an electrochemical sensing platform for its determination is a difficult target. This study addressed the above-cited issues to introduce a novel creatinine voltammetric sensor with high selectivity and sensitivity. Creatinine-copper complex was found to be soluble in acetonitrile and was utilized as a template for the MIP synthesis. Methacrylic acid, ethylene glycol dimethacrylate, and azobisisobutyronitrile were used as functional monomers, cross-linker, and initiator, respectively. The MIP holding creatinine sites were used to modify the carbon paste electrode. Since creatinine did not exhibit a significant voltammetric signal, an indirect sensing technique was employed. This was based on using Cu(II) ion as an electrochemical probe. The MIP-modified electrode signal for copper ion was significantly improved in the presence of creatinine. However, the introduction of creatinine in the Cu(II) solution did not affect the NIP-modified electrode response to copper ion. The proposed sensor indicated a linear current response in the range 1 × 10-7-1 × 10-5 mol L-1 with a detection limit of 5.9 × 10-8 mol L-1 (S/N = 3). Moreover, this method presents excellent performance in real sample analysis, with values of favorable creatinine recovery in plasma. The system exhibits acceptable precision (RSD = 4.04) and favorable selectivity toward creatinine.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Zahrasadat Mousavi
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
6
|
Alizadeh T, Akhoundian M. An ultra-sensitive and highly selective impedimetric sensor for vitamin D measurement based on a novel imprinted polymer synthesized utilizing template-derived functional monomer. Anal Chim Acta 2022; 1223:340206. [DOI: 10.1016/j.aca.2022.340206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
|
7
|
Amjadi S, Akhoundian M, Alizadeh T. A simple method for melatonin determination in the presence of high levels of tryptophan using an unmodified carbon paste electrode and square wave anodic stripping voltammetry. ELECTROANAL 2022. [DOI: 10.1002/elan.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somayeh Amjadi
- University of Mohaghegh Ardabili Faculty of Basic Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | | | | |
Collapse
|
8
|
Molecularly imprinted polymers for the extraction and determination of water-soluble vitamins: A review from 2001 to 2020. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Dewangan S, Barik T, Halder B, Mishra A, Dhiman R, Sasamori T, Chatterjee S. Rhodamine tethered 1,1’-unsymmetrical ferrocene functionalization: Metal sensing, cell imaging and logic gate properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Feroz M, Vadgama P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. ELECTROANAL 2020. [DOI: 10.1002/elan.202060276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Momina Feroz
- Institute of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Pankaj Vadgama
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS United Kingdom
| |
Collapse
|
11
|
Luo Q, Zhang R, Zhang J, Xia J. Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qi Luo
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Rui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jing Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
12
|
Feng XZ, Ferranco A, Su X, Chen Z, Jiang Z, Han GC. A Facile Electrochemical Sensor Labeled by Ferrocenoyl Cysteine Conjugate for the Detection of Nitrite in Pickle Juice. SENSORS 2019; 19:s19020268. [PMID: 30641921 PMCID: PMC6358730 DOI: 10.3390/s19020268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Simple and facile electrochemical sensors for nitrite detection were fabricated by directly depositing ferrocenoyl cysteine conjugates Fc[CO-Cys(Trt)-OMe]2 [Fc(Cys)2] or Fc[CO-Glu-Cys-Gly-OH] [Fc-ECG] on screen-printed electrodes (SPEs). The modified carbon electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Results indicated that Fc-ECG/SPE sensor showed enhanced current response and a lower overpotential than Fc(Cys)2/SPE sensor for nitrite detection. Optimal operating conditions were estimated for nitrite detection by DPV. The concentration of nitrite showed a good linear relationship with the current response in the range of 1.0–50 μmol·L−1 and with 0.3 μmol·L−1 as the concentration for limit of detection. There were no interferences from most common ions. The development of this electrochemical sensor was used for nitrite detection in pickled juice with a R.S.D. lower than 2.1% and average recovery lower than 101.5%, which indicated that disposable electrochemical sensor system can be applied for rapid and precise nitrite detection in foods.
Collapse
Affiliation(s)
- Xiao-Zhen Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Xiaorui Su
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Ghosh A, Mishra S, Giri S, Mobin SM, Bera A, Chatterjee S. Electrolyte-Free Dye-Sensitized Solar Cell with High Open Circuit Voltage Using a Bifunctional Ferrocene-Based Cyanovinyl Molecule as Dye and Redox Couple. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A. Ghosh
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Orissa 769008, India
| | - S. Mishra
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Orissa 769008, India
| | - S. Giri
- Theoretical Chemistry Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Orissa 769008, India
| | - S. M. Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 452017, India
| | - A. Bera
- Department of Physics, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181121, India
| | - S. Chatterjee
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Orissa 769008, India
| |
Collapse
|