1
|
Pinjari D, Patil Y, Misra R. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications. Chem Asian J 2024; 19:e202400167. [PMID: 38733151 DOI: 10.1002/asia.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Organic dyes that absorb light in the visible to near-infrared region have garnered significant interest, owing to their extensive utility in organic photovoltaics and various biomedical applications. Aza-boron-dipyrromethene (Aza-BODIPY) dyes are a class of chromophores with impressive photophysical properties such as tunable absorption from the visible region towards near infrared (NIR) region, high molar absorptivity, and fluorescence quantum yield. In this review, we discuss the developments in the aza-BODIPYs, related to their synthetic routes, photophysical properties and their applications. Their design strategies, modifications in chemical structures, mode/position of attachment, and their impact on photo-physical properties are reviewed. The potential applications of aza-BODIPY derivatives such as organic solar cells, photodynamic therapy, boron-neutron capture therapy, fluorescence sensors, photo-redox catalysis, photoacoustic probes and optoelectronic devices are explained.
Collapse
Affiliation(s)
- Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Yuvraj Patil
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, 58108, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
2
|
Pinjari D, Imran M, Dad P, Misra R, Zhao J. Near-IR-Absorbing Bis-Donor Functionalized Aza-BODIPY Derivatives: Synthesis and Photophysical Study by Using Transient Optical Spectroscopy. Chemistry 2024; 30:e202303799. [PMID: 38319002 DOI: 10.1002/chem.202303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
A series of near-IR absorbing 2,6-diarylated BF2-chelated aza-boron-dipyrromethenes (aza-BDPs) derivatives bearing different electron donors (benzene, naphthalene, phenanthrene, phenothiazine and carbazole) were designed and synthesized. The effect of different electron donor substitutions on the photophysical properties was studied by steady-state UV-vis absorption and fluorescence spectra, electrochemical, time-resolved nanosecond transient absorption (ns-TA) spectroscopy and theoretical computations. The UV-vis absorption spectra of AzaBDP-PTZ and AzaBDP-CAR (λabs=710 nm in toluene) showed a bathochromic absorption profile compared with the reference AzaBDP-Ph (λabs=685 nm in toluene), indicating the non-negligible electronic interaction at the ground state between donor and acceptor moieties. Moreover, the fluorescence is almost completely quenched for AzaBDP-PTZ/AzaBDP-CAR (fluorescence quantum yield, ΦF=0.2-0.7 % in toluene) as compared with the AzaBDP-Ph (ΦF=27 % in toluene). However, the apparent intersystem crossing ability of these compounds is poor, based on the singlet oxygen quantum yield (ΦΔ=0.3-1.5 %). The ns-TA spectral study showed typical Bodipy localized triplet state transient features, short-lived excited triplet state for AzaBDP-Ph (τT=53.2 μs) versus significantly long-lived triplet state for AzaBDP-CAR (τT=114 μs) was observed under deaerated experimental conditions. These triplet state lifetimes are much longer than that obtained with diiodoAzaBDP (intramolecular heavy atom effect, τT=1.5~7.2 μs). These information are useful for molecular structure design of triplet photosensitizers, for which longer triplet state lifetimes are usually desired. Theoretical computations displayed that the triplet state is mainly localized on the AzaBDP core, moreover, it was found that the HOMO/LUMO energy gap decreased after introducing donor moieties to the skeleton as compared with the reference.
Collapse
Affiliation(s)
- Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Muhammad Imran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Pratiksha Dad
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Tan L, Zheng X, Shi J, Qin T, Ji L. 4,9- and 4,10-Substituted pyrenes: synthesis, successful isolation, and optoelectronic properties. Org Biomol Chem 2024; 22:1676-1685. [PMID: 38299623 DOI: 10.1039/d3ob01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report herein a way to prepare and purify optoelectronic functional 4,9- and 4,10-substituted pyrene isomers. By tuning the size of substituents, the designed 4,9- and 4,10-isomers can be successfully isolated by recycling preparative size-exclusion chromatography (SEC) and/or repeated recrystallization. The structure and purity of the isolated compounds 1-5 have been confirmed by 1H NMR, 13C NMR, and HRMS. The photophysical and electrochemical properties of compounds 1-5 have been studied in detail both experimentally and theoretically. The lowest transitions of these pyrenes, 1-5, are allowed, with moderate to high fluorescence quantum yields and radiative decay rates around 108 s-1. The differences between the electrochemical and photophysical properties of 4,9-, 4,10-, 1,6-, and 2,7-substituted isomers are compared and concluded.
Collapse
Affiliation(s)
- Leibo Tan
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Xiuli Zheng
- Qilu Pharmaceutical Co. Ltd, No. 23999, Gongye Bei Road, Jinan 250100, China
| | - Junqing Shi
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, China.
| | - Lei Ji
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| |
Collapse
|
4
|
Alsaleh AZ, Pinjari D, Misra R, D'Souza F. Far-Red Excitation Induced Electron Transfer in Bis Donor-AzaBODIPY Push-Pull Systems; Role of Nitrogenous Donors in Promoting Charge Separation. Chemistry 2023; 29:e202301659. [PMID: 37401835 DOI: 10.1002/chem.202301659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
A far-red absorbing sensitizer, BF2 -chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push-pull systems linked with different nitrogenous electron donors, viz., N,N-dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push-pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge-separated states. Further, spectroelectrochemical studies performed in a thin-layer optical cell revealed diagnostic peaks of azaBODIPY⋅- in the visible and near-IR regions. Free-energy calculations revealed the charge separation from one of the covalently linked donors to the 1 azaBODIPY* to yield Donor⋅+ -azaBODIPY⋅- to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady-state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push-pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump-probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push-pull systems in polar benzonitrile. The CT/CS products populated the low-lying 3 azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge-separated states (CSS) to be 195 ps for NND-derived, 50 ps for TPA-derived, and 85 ps for PTZ-derived push-pull systems in benzonitrile.
Collapse
Affiliation(s)
- Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, TX 76203-5017, USA
| | - Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
5
|
Dutta D, Nair RR, Mangalath S, Nair SA, Joseph J, Gogoi P, Ramaiah D. Biocompatible Aza-BODIPY-Biotin Conjugates for Photodynamic Therapy of Cancer. ACS OMEGA 2023; 8:26180-26190. [PMID: 37521632 PMCID: PMC10373210 DOI: 10.1021/acsomega.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
With an objective to develop efficient photosensitizers to cancerous tissues, we synthesized two novel biocompatible sensitizers based on aza-BODIPYs incorporated with heavy atoms and biotin moieties. The bioconjugates DPR2a and DPR2b exhibited a favorable absorption range (600-750 nm) with excellent triplet-state quantum yields (up to 79%) and singlet oxygen generation yields (up to 75%). In vitro photobiological investigations employing MDA-MB-231 breast cancer cell lines exhibited rapid cellular uptake, negligible dark toxicity, and high photocytotoxicity. The mechanism of cell death of these systems was predominantly due to the mitochondrial damage, leading to apoptosis mediated via the generation of singlet oxygen-triggered reactive oxygen species. The in vivo studies with the representative conjugate DPR2a employing female NOD/SCID mice models showed inhibition in tumor growth and significantly decreased tumor volume post photodynamic therapy (PDT) treatment. Our results validate that both DPR2a and DPR2b with iodine incorporation exhibit favorable and superior photophysical and photobiological aspects and demonstrate thereby their potential applications in imaging and PDT of cancer.
Collapse
Affiliation(s)
- Dhiraj Dutta
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology
(CSIR-NEIST), Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajshree R. Nair
- Cancer
Research Program 4, Rajiv Gandhi Centre
for Biotechnology, Trivandrum, Kerala 695014, India
- Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sreejith Mangalath
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Trivandrum 695019, India
| | - S. Asha Nair
- Cancer
Research Program 4, Rajiv Gandhi Centre
for Biotechnology, Trivandrum, Kerala 695014, India
| | - Joshy Joseph
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Trivandrum 695019, India
| | - Pranjal Gogoi
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology
(CSIR-NEIST), Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Danaboyina Ramaiah
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Jawahar Nagar, Hyderabad, Telangana 500078, India
| |
Collapse
|
6
|
Near-infrared aza-BODIPYs bearing tetraphenylethylene: Synthesis, photophysical studies, and cell imaging application. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Teeuwen PCP, Melissari Z, Senge MO, Williams RM. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules 2022; 27:molecules27206967. [PMID: 36296559 PMCID: PMC9610856 DOI: 10.3390/molecules27206967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
Collapse
Affiliation(s)
- Paula C. P. Teeuwen
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Zoi Melissari
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
- Correspondence: (M.O.S.); (R.M.W.)
| | - René M. Williams
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Correspondence: (M.O.S.); (R.M.W.)
| |
Collapse
|
8
|
Zarcone SR, Yarbrough HJ, Neal MJ, Kelly JC, Kaczynski KL, Bloomfield AJ, Bowers GM, Montgomery TD, Chase DT. Synthesis and photophysical properties of nitrated aza-BODIPYs. NEW J CHEM 2022. [DOI: 10.1039/d1nj05976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of nitrated aza-BODIPYs on the 2- and 6-positions were regioselectively synthesized and their photophysical properties were examined.
Collapse
Affiliation(s)
- Samuel R. Zarcone
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Hana J. Yarbrough
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Martin J. Neal
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Jordan C. Kelly
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Katie L. Kaczynski
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Aaron J. Bloomfield
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Geoffrey M. Bowers
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Thomas D. Montgomery
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Daniel T. Chase
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| |
Collapse
|
9
|
Synthesis and optical properties of 1-ethyl-indol-3-yl-substituted aza-BODIPY dyes at the 1,7-positions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Merz J, Dietz M, Vonhausen Y, Wöber F, Friedrich A, Sieh D, Krummenacher I, Braunschweig H, Moos M, Holzapfel M, Lambert C, Marder TB. Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives. Chemistry 2020; 26:438-453. [PMID: 31593316 PMCID: PMC6973242 DOI: 10.1002/chem.201904219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 02/03/2023]
Abstract
We synthesized new pyrene derivatives with strong bis(para-methoxyphenyl)amine donors at the 2,7-positions and n-azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Dietz
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yvonne Vonhausen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Frederik Wöber
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
11
|
Berezin M, Antina E, Guseva G, Kritskaya A, Semeikin A. Effect of meso-phenyl substitution on spectral properties, photo- and thermal stability of boron (III) and zinc (II) dipyrrometenates. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Abstract
Difluoroboron-dipyrromethenes (BODIPYs) are highly popular fluorescent dyes with applications as NIR probes for bioimaging, fluorescent tags/sensors and as photosensitizers in cancer therapy and organic photovoltaics. This review concentrates on the synthesis and spectral properties of BODIPY dyes conjugated with carbazole heterocycle. The carbazole is an electron rich tricyclic compound and due to its excellent electronic properties, it is extensively used in the production of electroluminescent materials and polymers. This review highlights the recent progress made on the series of BODIPY derivatives containing carbazole ring at alpha, beta, and meso-positions of the BODIPY skeleton. Carbazole based hybrid BODIPYs, carbazole linked aza-BODIPYs and carbazole-fused BODIPYs are also discussed.
Collapse
Affiliation(s)
- Iti Gupta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Praseetha E Kesavan
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
13
|
Prieto‐Castañeda A, Avellanal‐Zaballa E, Gartzia‐Rivero L, Cerdán L, Agarrabeitia AR, García‐Moreno I, Bañuelos J, Ortiz MJ. Tailoring the Molecular Skeleton of Aza‐BODIPYs to Design Photostable Red‐Light‐Emitting Laser Dyes. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alejandro Prieto‐Castañeda
- Departamento de Química Orgánica Facultad de Ciencias QuímicasCiudad Universitaria s/n 28040 Madrid Spain
| | | | - Leire Gartzia‐Rivero
- Departamento de Química-FísicaUniversidad del Pais-Vasco-EHU Apartado 644 48080 Bilbao Spain
| | - Luis Cerdán
- Departamento de Sistemas de Baja Dimensionalidad Superficies y Materia CondensadaInstituto de Química-Física “Rocasolano” (CSIC) Serrano 119 28006 Madrid Spain
| | - Antonia R. Agarrabeitia
- Departamento de Química Orgánica Facultad de Ciencias QuímicasCiudad Universitaria s/n 28040 Madrid Spain
- Departamento de Química OrgánicaFacultad de Óptica y Optometría c/ Arcos de Jalón 118 28037 Madrid Spain
| | - Inmaculada García‐Moreno
- Departamento de Sistemas de Baja Dimensionalidad Superficies y Materia CondensadaInstituto de Química-Física “Rocasolano” (CSIC) Serrano 119 28006 Madrid Spain
| | - Jorge Bañuelos
- Departamento de Química-FísicaUniversidad del Pais-Vasco-EHU Apartado 644 48080 Bilbao Spain
| | - María J. Ortiz
- Departamento de Química Orgánica Facultad de Ciencias QuímicasCiudad Universitaria s/n 28040 Madrid Spain
| |
Collapse
|
14
|
Gibbons D, Emandi G, Senge MO. Crystal structure and synthesis of 3-(1 H-pyrrol-2-yl)-1-(thio-phen-2-yl)propanone. Acta Crystallogr E Crystallogr Commun 2018; 74:1463-1466. [PMID: 30319802 PMCID: PMC6176454 DOI: 10.1107/s2056989018012331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/30/2018] [Indexed: 11/11/2022]
Abstract
The title compound, C11H9NOS, was obtained in an improved yield compared to previous literature methods. The mol-ecule is essentially planar with a maximum deviation of 0.085 Å from the mean plane through all non-H atoms. There is directive inter-molecular hydrogen bonding in the form of N-H⋯O hydrogen bonds with a distance of 2.889 (3) Å between the pyrrole amine and the ketone carbonyl O atom. The resulting hydrogen-bonding network defines a ribbon parallel to the a axis. These ribbons form offset stacks along the b axis.
Collapse
Affiliation(s)
- Dáire Gibbons
- School of Chemistry, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Ganapathi Emandi
- School of Chemistry, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Mathias O. Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
|