1
|
Amayuelas E, Farrando-Perez J, Missyul A, Grosu Y, Silvestre-Albero J, Carrillo-Carrión C. Fluorinated Nanosized Zeolitic-Imidazolate Frameworks as Potential Devices for Mechanical Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46374-46383. [PMID: 39178309 PMCID: PMC11378149 DOI: 10.1021/acsami.4c09969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Fluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1H-imidazole (monofluorinated linker) or 2-methyl-5-(trifluoromethyl)-1H-imidazole (trifluorinated linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands. Second, we demonstrate for the first time that these nanoscale fluorinated ZIFs outperform the pristine ZIF-8 for water intrusion/extrusion, i.e., for storing mechanical energy via forced intrusion of nonwetting water due to the improved hydrophobicity and modified framework dynamics. Moreover, we also show that by varying the nature of the F-imidazole ligand, the performance of the resulting ZIFs, including the pressure thresholds and stored/dissipated energy, can be finely tuned, thus opening the path for the design of a library of fluorine-modified ZIFs with unique behavior.
Collapse
Affiliation(s)
- Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gazteiz, Spain
| | - Judit Farrando-Perez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain
| | - Alexander Missyul
- CELLS─ALBA Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gazteiz, Spain
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain
| | | |
Collapse
|
2
|
de Izarra A, Coudert FX, Fuchs AH, Boutin A. Molecular Simulation of the Impact of Defects on Electrolyte Intrusion in Zeolites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:19056-19063. [PMID: 38088342 DOI: 10.1021/acs.langmuir.3c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We have investigated through molecular simulation the intrusion of electrolytes in two representative pure-silica zeolites, silicalite-1 and chabazite, in which point defects were introduced in varying amounts. We distinguish between two types of defects, considering either "weak" or "strong" silanol nest defects, resulting in different hydration behaviors. In the presence of weak defects, the hydration process occurs through a homogeneous nucleation process, while with strong defects, we observe an initial adsorption followed by a filling of the nanoporous volume at a higher pressure. However, we show that electrolytes do not penetrate the zeolites, and these defects appear to have only marginal influence on the thermodynamics of electrolyte intrusion. While replacing pure water by the electrolyte solution shifts the intrusion pressure toward higher values because of the drop of water saturation vapor pressure, an increase in hydrophilicity of the framework due to point defects has the opposite effect, showing that controlling the amount of defects in zeolites is crucial for storage energy applications.
Collapse
Affiliation(s)
- Ambroise de Izarra
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Alain H Fuchs
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Anne Boutin
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Johnson LJW, Paulo G, Bartolomé L, Amayuelas E, Gubbiotti A, Mirani D, Le Donne A, López GA, Grancini G, Zajdel P, Meloni S, Giacomello A, Grosu Y. Optimization of the wetting-drying characteristics of hydrophobic metal organic frameworks via crystallite size: The role of hydrogen bonding between intruded and bulk liquid. J Colloid Interface Sci 2023; 645:775-783. [PMID: 37172487 DOI: 10.1016/j.jcis.2023.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
HYPOTHESIS The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. EXPERIMENTS Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. FINDINGS A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure.
Collapse
Affiliation(s)
- Liam J W Johnson
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain; Department of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao, 48490, Leioa, Spain
| | - Gonçalo Paulo
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain
| | - Alberto Gubbiotti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy
| | - Diego Mirani
- Department of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia, I-27100, Italy
| | - Andrea Le Donne
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife) Via Luigi Borsari 46, Ferrara, I-44121, Italy
| | - Gabriel A López
- Department of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao, 48490, Leioa, Spain
| | - Giulia Grancini
- Department of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia, I-27100, Italy
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow, 41-500, Poland
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife) Via Luigi Borsari 46, Ferrara, I-44121, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy.
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland.
| |
Collapse
|
4
|
Confalonieri G, Daou TJ, Nouali H, Arletti R, Ryzhikov A. Energetic Performance of Pure Silica Zeolites under High-Pressure Intrusion of LiCl Aqueous Solutions: An Overview. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25092145. [PMID: 32375316 PMCID: PMC7248837 DOI: 10.3390/molecules25092145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
An overview of all the studies on high-pressure intrusion-extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical energy storage, absorption, and generation are described. The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure increases with the salt concentration and depends considerably on zeosil framework. In the case of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure on LiCl aqueous solutions intrusion-extrusion is also discussed.
Collapse
Affiliation(s)
- Giorgia Confalonieri
- Axe Matériaux à Porositées Contrôlées, Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (G.C.); (H.N.)
- Université de Strasbourg, F-67081 Strasbourg, France
- Dipartimento di Scienze Chimiche e Geologiche (DSCG), Università di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - T. Jean Daou
- Axe Matériaux à Porositées Contrôlées, Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (G.C.); (H.N.)
- Université de Strasbourg, F-67081 Strasbourg, France
- Correspondence: (T.J.D.); (A.R.); Tel.: +33-389-33-67-39 (T.J.D.); +33-389-33-67-54 (A.R.)
| | - Habiba Nouali
- Axe Matériaux à Porositées Contrôlées, Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (G.C.); (H.N.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Rossella Arletti
- Dipartimento di Scienze Chimiche e Geologiche (DSCG), Università di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Andrey Ryzhikov
- Axe Matériaux à Porositées Contrôlées, Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (G.C.); (H.N.)
- Université de Strasbourg, F-67081 Strasbourg, France
- Correspondence: (T.J.D.); (A.R.); Tel.: +33-389-33-67-39 (T.J.D.); +33-389-33-67-54 (A.R.)
| |
Collapse
|