1
|
Ketelboeter DR, Pappoppula M, Aponick A. Chemoselective Diazine Dearomatization: The Catalytic Enantioselective Dearomatization of Pyrazine. J Am Chem Soc 2024; 146:11610-11615. [PMID: 38619328 DOI: 10.1021/jacs.4c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Despite much progress in the area of dearomatization, the enantioselective dearomatization of heterocycles is limited to those with a single heteroatom. Here we report a highly enantioselective copper-catalyzed dearomatization of pyrazine, a diazine, leading to chiral C-substituted piperazines. When exposed to a chloroformate and an alkyne in the presence of a catalyst derived from a copper salt and the chiral ligand StackPhos, pyrazine is readily dearomatized to provide a 2,3-disubstituted dihydropyrazine as single diastereomer in high enantiomeric excess. Mechanistic studies support a noninnocent involvement of chloride ion preventing a second iminium alkynylation, thus enabling subsequent functionalization at the second reactive site. The synthetically useful dihydropyrazine products, obtained in up to 95% yield and 99% ee, can be further manipulated to form optically active C-substituted piperazines and C1-symmetric 1,2-diamines.
Collapse
Affiliation(s)
- Devin R Ketelboeter
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Mukesh Pappoppula
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Chaudhary J, Sharma V, Jain A, Sharma D, Chopra B, Dhingra AK. A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review. Med Chem 2024; 20:17-29. [PMID: 37815177 DOI: 10.2174/0115734064244117230923172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Jasmine Chaudhary
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Diksha Sharma
- Research Scholar, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
3
|
Fang W, Sun BB, Qin SC, Fang LP, Yu XR, Jiang HJ, Yu J. Enantioselective Access to Chiral 2,5-Diketopiperazines via Stereogenic-at-Cobalt(III)-Catalyzed Ugi-4CRs/Cyclization Sequences. J Org Chem 2023; 88:16024-16037. [PMID: 37917565 DOI: 10.1021/acs.joc.3c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
An asymmetric synthesis of chiral 2,5-diketopiperazines by the Ugi-4CR/cyclization is exhibited. The employment of catalytic anionic chiral Co(III) complexes delivered α-propiolyl aminoamides in high yields with excellent enantioselectivities (31 examples, up to 95% ee). The following treatment of Ugi-adducts with PPh3 leads to chiral 2,5-DKPs without significant loss of enantioselectivities (26 examples, up to 91% ee).
Collapse
Affiliation(s)
- Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Bing-Bing Sun
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Shi-Cheng Qin
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Li-Ping Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xin-Ran Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
4
|
González-Saiz B, Carreira-Barral I, Pertejo P, Gómez-Ayuso J, Quesada R, García-Valverde M. One-Pot Diastereoselective Synthesis of Pyrrolopiperazine-2,6-diones by a Ugi/Nucleophilic Substitution/N-Acylation Sequence. J Org Chem 2022; 87:9391-9398. [PMID: 35759645 PMCID: PMC9348836 DOI: 10.1021/acs.joc.2c00694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The diastereoselective
synthesis of two families of pyrrolopiperazine-2,6-diones
is presented. These compounds were prepared by one-pot Ugi/nucleophilic
substitution/N-acylation/debenzoylation/(elimination) sequences. This
novel route provides straightforward access to a wide variety of pyrrolopiperazine-2,6-diones
with high chemical yields and complete diastereoselectivities. The
proposed synthetic strategy poses a significant improvement compared
to the syntheses of pyrrolopiperazine-2,6-diones previously described,
as it allows introduction of different substituents to the C4 position
and the diastereoselective generation of a new stereogenic center
on the bridgehead carbon (C8a).
Collapse
Affiliation(s)
- Beatriz González-Saiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Pablo Pertejo
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Javier Gómez-Ayuso
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| |
Collapse
|
5
|
Chiaramonte N, Angeli A, Sgambellone S, Bonardi A, Nocentini A, Bartolucci G, Braconi L, Dei S, Lucarini L, Teodori E, Gratteri P, Wünsch B, Supuran CT, Romanelli MN. 2-(2-Hydroxyethyl)piperazine derivatives as potent human carbonic anhydrase inhibitors: Synthesis, enzyme inhibition, computational studies and antiglaucoma activity. Eur J Med Chem 2022; 228:114026. [PMID: 34920169 DOI: 10.1016/j.ejmech.2021.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Targeting Carbonic Anhydrases (CAs) represents a strategy to treat several diseases, from glaucoma to cancer. To widen the structure-activity relationships (SARs) of our series of piperazines endowed with potent human carbonic anhydrase (hCA) inhibition, a new series of chiral piperazines carrying a (2-hydroxyethyl) group was prepared. The Zn-binding function, the 4-sulfamoylbenzoyl moiety, was connected to one piperazine N-atom, while the other nitrogen was decorated with alkyl substituents. In analogy to the approach used for the synthesis of the previously reported series, the preparation of the new compounds started with (R)- and (S)-aspartic acid. A partial racemization occurred during the synthesis. In order to overcome this problem, other chemical strategies were investigated. The inhibitory activity of the new polar derivatives against four hCAs isoforms I, II, IV and IX using a stopped flow CO2 hydrase assay was determined. Some compounds showed potency in the nanomolar range and a preference for inhibiting hCA IX.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Angeli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Sgambellone
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Alessandro Bonardi
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Lucarini
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Elisabetta Teodori
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Paola Gratteri
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms University Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Claudiu T Supuran
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Khodadadi M, Ghandi M, Abbasi A. One‐pot synthesis of novel spirocyclic‐dihydropyrazine‐2‐(
1
H
)ones through a Ugi
4‐CR
/deprotection. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meysam Khodadadi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Mehdi Ghandi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
7
|
Jain A, Chaudhary J, Khaira H, Chopra B, Dhingra A. Piperazine: A Promising Scaffold with Analgesic and Anti-inflammatory Potential. Drug Res (Stuttg) 2020; 71:62-72. [PMID: 33336346 DOI: 10.1055/a-1323-2813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Piperazine, a nitrogen-containing heterocyclic has acquired an inimitable position in medicinal chemistry because of its versatile structure, which has fascinated researchers to design novel piperazine based molecules having various biological actions. The subsistence of various compounds possessing diverse pharmacological activities in the literature further confirms this fact. Currently available analgesics and anti-inflammatory drugs are associated with side effects that limit their use. Moreover, the literature reveals the incredible anti-inflammatory and analgesic potential of piperazine derivatives along with their method of synthesis, therefore; the present review has been designed to collate the development made in this area that will surely be advantageous in designing novel piperazine based candidates with enhanced efficacy and less toxicity. An extensive literature survey was carried by scrutinizing peer reviewed articles from worldwide scientific databases available on GOOGLE, SCOPUS, PUBMED, and only relevant studies published in English were considered.
Collapse
Affiliation(s)
- Akash Jain
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Jasmine Chaudhary
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Harpreet Khaira
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Ashwani Dhingra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| |
Collapse
|
8
|
Chamakuri S, Shah MM, Yang DCH, Santini C, Young DW. Practical and scalable synthesis of orthogonally protected-2-substituted chiral piperazines. Org Biomol Chem 2020; 18:8844-8849. [PMID: 33118584 DOI: 10.1039/d0ob01713b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic route to orthogonally protected, enantiomerically pure 2-substituted piperazines is described. Starting from α-amino acids, within four steps chiral 2-substituted piperazines are obtained. The key transformation involves an aza-Michael addition between an orthogonally bis-protected chiral 1,2-diamine and the in situ generated vinyl diphenyl sulfonium salt derived from 2-bromoethyl-diphenylsulfonium triflate. Further validation using different protecting groups as well as synthesis on multigram scale was performed. The method was also applied to the construction of chiral 1,4-diazepanes and 1,4-diazocanes. Additionally, the method was utilized in a formal synthesis of chiral mirtazapine.
Collapse
Affiliation(s)
- Srinivas Chamakuri
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
9
|
Ge Y, Han Z, Wang Z, Ding K. Ir-Catalyzed Double Asymmetric Hydrogenation of 3,6-Dialkylidene-2,5-diketopiperazines for Enantioselective Synthesis of Cyclic Dipeptides. J Am Chem Soc 2019; 141:8981-8988. [PMID: 31079460 DOI: 10.1021/jacs.9b02920] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An Ir/spiro[4,4]-1,6-nonadiene-based phosphine-oxazoline ligand (SpinPHOX) complex-catalyzed double asymmetric hydrogenation of 3,6-dialkylidene-1,4-dimethylpiperazine-2,5-diones has been developed, providing efficient and practical access to a wide variety of chiral 3,6-disubstituted-2,5-diketopiperazines in high yields with exclusive cis-diastereo- and excellent enantioselectivities (>99% de, up to 98% ee). The synthetic utilities of the protocol have been demonstrated in a gram scale synthesis of 6a and efficient construction of chiral products 8, 14, and 17 as well as a 2-butenyl-bridged bicyclic diketopiperazine 10 and hydroxydiketopiperazine 11. With an analogous achiral Ir catalyst, the hydrogenation of enantiopure monohydrogenated intermediate 7a gave cis-6a as the only product, indicating that the second-step hydrogenation of the titled transformation is a chiral substrate controlled process. The reaction profile study for asymmetric hydrogenation (AH) of 5a revealed that the concentration of the monohydrogenation intermediate 7a remained at a low level (<8%) during the course of hydrogenation. The hydrogenation of 5a to 6a proceeded significantly faster than that of its half-hydrogenated intermediate ( S)-7a, indicating that the titled reaction involves primarily a processive mechanism, in which a single catalyst molecule performs consecutive hydrogenation of the two C═C double bonds in substrate 5a without dissociation of the partially reduced 7a. The present protocol represents a rare example of asymmetric catalytic consecutive hydrogenation of heterocycles and provides an alternative way for efficient construction of cyclic dipeptides.
Collapse
Affiliation(s)
- Yao Ge
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
10
|
Chamakuri S, Jain P, Reddy Guduru SK, Arney JW, MacKenzie KR, Santini C, Young DW. Synthesis of Enantiomerically Pure 6-Substituted-Piperazine-2-Acetic Acid Esters as Intermediates for Library Production. J Org Chem 2018; 83:6541-6555. [DOI: 10.1021/acs.joc.8b00854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | - J. Winston Arney
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|