1
|
Sun X, Jiang X, Wang Z, Li Y, Ren J, Zhong K, Li X, Tang L, Li J. Fluorescent probe for imaging N 2H 4 in plants, food, and living cells and for quantitative detection of N 2H 4 in soil and water using a smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135701. [PMID: 39217942 DOI: 10.1016/j.jhazmat.2024.135701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | - Xin Jiang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Zengdong Wang
- Shandong Anyuan Marine Breeding Co., Ltd., Yantai 265617, PR China
| | - Yang Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Jiashu Ren
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Keli Zhong
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xuepeng Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Lijun Tang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
2
|
Palanisamy J, Rajagopal R, Alfarhan A. A Pyrazine-Based Chromophore Photophysical Properties and its Detection for Hydrazine and Acid Vapors. J Fluoresc 2024:10.1007/s10895-024-03825-3. [PMID: 38951307 DOI: 10.1007/s10895-024-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Designed and synthesized linear pyrazine-based D-π-A-π-A probe is investigated to study the colorimetric and emission properties with different polarity index solvents. Their molar extinction coefficients were estimated for each solvent. This TLP probe was investigated in THF/water binary solution aggregates, and a redshifted AIE was observed reaching a water fraction of 70%. Also, this TLP probe was applied to the multifunctional, rapid, sensitive and selective detection of acid-base (TFA/TEA) and hydrazine (N2H4) in colorimetric and fluorimetric sensors. The pyrazine unit probe demonstrated an acidochromic effect and explored the acid-sensing behavior. The TLP probe containing malononitrile functional groups has extensively detected hazardous hydrazine species due to nucleophilic attack of hydrazine at the α-position of dicyano. This TLP probe allowed the quick and fast-sensitive detection of hydrazine hydride with a low detection limit of 1.08 nM. According to the results, the mechanism was confirmed by UV-Vis, PL, NMR and MS spectra for the detection of hydrazine, and further evidence of the protonation-deprotonation process in added TFA/TEA was made by titration studies by 1H NMR. Therefore, this work can be used for test strip kits for multifunction applications.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Palani, Tamilnadu, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Oguz M, Erdemir S, Malkondu S. Engineering a "turn-on" NIR fluorescent sensor-based hydroxyphenyl benzothiazole with a cinnamoyl unit for hydrazine and its environmental and in-vitro applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123193. [PMID: 38142810 DOI: 10.1016/j.envpol.2023.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Hydrazine (N2H4), a chemical compound widely used in various industrial applications, causes significant environmental and biological hazards. Therefore, it is crucial to develop methodologies for the visualization and real time tracking of N2H4. In this regard, we have constructed a novel near-infrared fluorescent probe (HBT-Cy) that can effectively detect N2H4 in various samples. HBT-Cy contains 2-(2'-hydroxyphenyl)benzothiazole (HBT), cinnamoyl (Cy), and pyridinium (Py) moieties. Importantly, HBT-Cy exhibits a rapid, selective, and highly sensitive response to N2H4. This response results in the release of HBT-Py and the generation of considerable colorimetric changes along with a significant NIR (near infrared) fluorescence signal, peaking at 685 nm. Advantages of this system include turn on NIR fluorescence with large Stokes shift, (approximately 171 nm), low limit of detection (LOD = 0.11 μM) and quantum yield (0.211). The probe with low cytotoxic behavior demonstrates strong NIR fluorescence imaging capabilities to visualize endogenous and exogenous N2H4 in live cells. This mitochondria-targetable probe shows effective subcellular localization. These results suggest that HBT-Cy is a valuable probe for tracking and investigating the behavior of N2H4 in biological systems and environmental samples.
Collapse
Affiliation(s)
- Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey.
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
4
|
Li DP, Wei L, Guo X, Ran X, Zhang T, Zhang T, Xiao H, Shu W. A thiomorpholine substituted malonyl-coumarin dye for discriminative detection of hydrazine and strong acidity. RSC Adv 2023; 13:35811-35815. [PMID: 38074403 PMCID: PMC10704299 DOI: 10.1039/d3ra07183a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2025] Open
Abstract
Detection of toxic hydrazine and harmful strong acidity is of great importance for survival of organisms. In the present paper, a new thiomorpholine substituted malonyl-coumarin dye was synthesized for discriminative detection of hydrazine and strong acidity. At pH 7.4, the fluorescence at 560 nm decreased and that at 496 nm increased upon reaction with hydrazine, which was used for on-site detection of hydrazine vapor and endogenous hydrazine in live cells. From pH 2.0 to 1.2, the fluorescence at 563 nm increased greatly, which could be ascribed to the PET process from thiomorpholine to malonyl-coumarin. The probe was desirable for discriminative detection of toxic hydrazine and strong acidity.
Collapse
Affiliation(s)
- Dong-Peng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology Zibo 255049 P. R. China
| | - Xinkang Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Taohuan Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 P. R. China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
5
|
Sheng X, Sun X, Zhang Y, Zhang C, Liu S, Wang S. A Ratiometric Fluorescent Probe for N 2H 4 Having a Large Detection Range Based upon Coumarin with Multiple Applications. Molecules 2023; 28:7629. [PMID: 38005353 PMCID: PMC10674487 DOI: 10.3390/molecules28227629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Although hydrazine (N2H4) is a versatile chemical used in many applications, it is toxic, and its leakage may pose a threat to both human health and environments. Consequently, the monitoring of N2H4 is significant. This study reports a one-step synthesis for coumarin-based ratiometric fluorescent probe (FP) CHAC, with acetyl as the recognition group. Selected deprotection of the acetyl group via N2H4 released the coumarin fluorophore, which recovered the intramolecular charge transfer process, which caused a prominent fluorescent, ratiometric response. CHAC demonstrated the advantages of high selectivity, a strong capacity for anti-interference, a low limit of detection (LOD) (0.16 μM), a large linear detection range (0-500 μM), and a wide effective pH interval (6-12) in N2H4 detection. Furthermore, the probe enabled quantitative N2H4 verifications in environmental water specimens in addition to qualitative detection of N2H4 in various soils and of gaseous N2H4. Finally, the probe ratiometrically monitored N2H4 in living cells having low cytotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouxin Wang
- School of Pharmaceutical Sciences, Jining Medical University, Rizhao 276826, China; (X.S.); (S.L.)
| |
Collapse
|
6
|
Jiang JH, Zhang ZH, Qu J, Wang JY. A lysosomal targeted fluorescent probe based on coumarin for monitoring hydrazine in living cells with high performance. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:17-21. [PMID: 34908038 DOI: 10.1039/d1ay01821c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A lysosomal targeted fluorescent probe based on coumarin for monitoring hydrazine (N2H4) in living cells was designed and synthesised. The novel fluorescent probe Cou-Lyso-N2H4, in response to N2H4, exhibited good selectivity, low cytotoxicity, and lysosomal localization, which could be suitable for studying the harmfulness of N2H4 in subcellular organelles during various physiological processes.
Collapse
Affiliation(s)
- Jin-Hua Jiang
- School of Aeronautics, Shandong Jiaotong University, Jinan, Shandong, 250357, P. R. China.
| | - Zhi-Hao Zhang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | - Jianbo Qu
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| |
Collapse
|
7
|
Guria UN, Manna SK, Maiti K, Samanta SK, Ghosh A, Datta P, Mandal D, Mahapatra AK. A xanthene-based novel colorimetric and fluorometric chemosensor for the detection of hydrazine and its application in the bio-imaging of live cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj02943f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient xanthene-based colorimetric and fluorometric probe (MXI) for the selective detection of hydrazine in solution and in living cells.
Collapse
Affiliation(s)
- Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal-721657, India
| | - Kalipada Maiti
- Department of Chemistry, University of Calcutta, University College of Science, 92, A. P. C. Road, Kolkata 700009, India
| | - Sandip Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Aritri Ghosh
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Pallab Datta
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| |
Collapse
|
8
|
Wu C, Xie R, Pang X, Li Y, Zhou Z, Li H. A colorimetric and near-infrared ratiometric fluorescent probe for hydrazine detection and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118764. [PMID: 32827910 DOI: 10.1016/j.saa.2020.118764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Hydrazine (N2H4) is extensively used in industry but highly toxic; hence, highly sensitive detection of N2H4 is extremely meaningful. Herein, a colorimetric and near-infrared (NIR) ratiometric fluorescent probe named DXM-OH was rationally designed and synthesized based on oxanthrene malononitrile derivative for the specific detection of N2H4. The dicyanovinyl group in DXM-OH was served as the recognition unit for N2H4. DXM-OH showed high sensitivity to N2H4 in the range of 1-900 μM, with the limit of detection (LOD) of 0.09 μM (2.87 ppb), which is much lower than the U.S. Environmental Protection Agency standard (10 ppb). Furthermore, the practical applications of DXM-OH in detecting N2H4 in real water samples and imaging of N2H4 in living cells were demonstrated, indicating its potential utility for N2H4 sensing in environmental and biological samples.
Collapse
Affiliation(s)
- Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ruihua Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
9
|
Liu W, Wang Y, Wu N, Feng W, Li Z, Wei L, Yu M. A mitochondrion-targeting fluorescent probe for hypochlorite anion in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118564. [PMID: 32526396 DOI: 10.1016/j.saa.2020.118564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
As momentous reactive oxygen species (ROS), it is necessary to develop high-sensitivity and high-specificity fluorescent probes for tracking hypochlorite anion (ClO-) in environmental and biological systems. Herein, a kind of red luminescent carbon dots (NS-dots) was synthesized by one-step solvothermal method to detect ClO- in PBS buffer solution (VPBS:VEtOH = 100:1, pH = 7.4). The NS-dots has high sensitivity and low detection limit (13.3 μmol/L) for detecting ClO- with linear range from 6.7 × 10-5 mol/L to 26.7 × 10-5 mol/L. Using Rhodamine B (31% at 520 nm in water) as a reference, the NS-dots have a fluorescence quantum yield of 7.2%. Intracellular photostability, mitochondrial targeting properties and the fluorescence imaging towards intracellular ClO- were demonstrated.
Collapse
Affiliation(s)
- Wenjing Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuying Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Liuhe Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Yan H, Huo F, Yue Y, Chao J, Yin C. A practical pH-compatible fluorescent sensor for hydrazine in soil, water and living cells. Analyst 2020; 145:7380-7387. [PMID: 32930683 DOI: 10.1039/d0an01633k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The excellent water solubility of hydrazine (N2H4) allows it to easily invade the human body through the skin and respiratory tract, thereby damaging human organs and the central nervous system. To realize the monitoring of N2H4 effectively, first, coumarin was used to construct an inner alicyclic ring as the reaction site, extending the conjugation and strengthening the rigidity of the probe Co-Hy to improve its luminescence performance and enhance its ability to resist acids and alkalis. Second, we introduced a carboxyl group at the ortho position of the inner alicyclic ring to improve the water solubility of Co-Hy, and its strong electron pulling effect increased the activity of the reaction site. Spectroscopy experiments showed that Co-Hy featured excellent water solubility, high pH resistance (pH 4-11), excellent selectivity, fast analysis speed (within 5 minutes), and a low detection limit toward N2H4 (69 nM, 2.2 ppb). In addition, test-strip, spray, and cell-imaging experiments confirmed the outstanding application potential of Co-Hy for convenient N2H4 analysis in a variety of environments.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | | | | | | | | |
Collapse
|
11
|
Zhang XY, Yang YS, Wang W, Jiao QC, Zhu HL. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213367] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Guo Z, Niu Q, Yang Q, Li T, Wei T, Yang L, Chen J, Qin X. New “naked-eye” colori/fluorimetric “turn-on” chemosensor: Ultrafast and ultrasensitive detection of hydrazine in ∼100% aqueous solution and its bio-imaging in living cells. Anal Chim Acta 2020; 1123:64-72. [DOI: 10.1016/j.aca.2020.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/03/2023]
|
13
|
Yan L, Zhang S, Xie Y, Mu X, Zhu J. Recent Progress in the Development of Fluorescent Probes for the Detection of Hydrazine (N2H4). Crit Rev Anal Chem 2020; 52:210-229. [DOI: 10.1080/10408347.2020.1797464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Shiqing Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Ya Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Xinyue Mu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Jinbiao Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| |
Collapse
|
14
|
Li Y, Ban Y, Wang R, Wang Z, Li Z, Fang C, Yu M. FRET-based ratiometric fluorescent detection of arginine in mitochondrion with a hybrid nanoprobe. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Shin MC, Lee Y, Park SB, Kim E. Development of Azo-Based Turn-On Chemical Array System for Hydrazine Detection with Fluorescence Pattern Analysis. ACS OMEGA 2019; 4:14875-14885. [PMID: 31552327 PMCID: PMC6751537 DOI: 10.1021/acsomega.9b01487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
A facile turn-on chemical sensor array was developed for hydrazine detection by means of fluorescence pattern recognition. Taking advantage of the unique properties of the azo group, four different fluorogenic probes, Seoul-Fluor (SF)-Azo 01-04, were designed and prepared. SF-Azo 01-04 displayed fluorescence enhancement of up to 800-fold upon reaction with hydrazine, and all probes exhibited excellent selectivity in the presence of various anions and nucleophiles. By employing the probes in a cellulose paper-based array system, the hydrazine concentration was successfully determined by monitoring the change in fluorescent patterns.
Collapse
Affiliation(s)
- Min Chul Shin
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
| | - Youngjun Lee
- CRI Center for Chemical Proteomics, Department of Chemistry and Department of Biophysics
and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry and Department of Biophysics
and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Eunha Kim
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
| |
Collapse
|
16
|
Zhang P, Gong Y, Zhang Q, Guo X, Ding C. In situ generated chromophore as the indicator for background-free sensing strategy of hydrazine with high sensitivity with in vitro and in vivo applications. J Mater Chem B 2019; 7:5182-5189. [DOI: 10.1039/c9tb00769e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A background-free sensing assay for hydrazine was developed by using a fluorescent chromophore generated in situ as the signal indicator.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| |
Collapse
|