1
|
Neshat A, Mastrorilli P, Mousavizadeh Mobarakeh A. Recent Advances in Catalysis Involving Bidentate N-Heterocyclic Carbene Ligands. Molecules 2021; 27:95. [PMID: 35011327 PMCID: PMC8746573 DOI: 10.3390/molecules27010095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of persistent carbenes by the isolation of 1,3-di-l-adamantylimidazol-2-ylidene by Arduengo and coworkers, we witnessed a fast growth in the design and applications of this class of ligands and their metal complexes. Modular synthesis and ease of electronic and steric adjustability made this class of sigma donors highly popular among chemists. While the nature of the metal-carbon bond in transition metal complexes bearing N-heterocyclic carbenes (NHCs) is predominantly considered to be neutral sigma or dative bonds, the strength of the bond is highly dependent on the energy match between the highest occupied molecular orbital (HOMO) of the NHC ligand and that of the metal ion. Because of their versatility, the coordination chemistry of NHC ligands with was explored with almost all transition metal ions. Other than the transition metals, NHCs are also capable of establishing a chemical bond with the main group elements. The advances in the catalytic applications of the NHC ligands linked with a second tether are discussed. For clarity, more frequently targeted catalytic reactions are considered first. Carbon-carbon coupling reactions, transfer hydrogenation of alkenes and carbonyl compounds, ketone hydrosilylation, and chiral catalysis are among highly popular reactions. Areas where the efficacy of the NHC based catalytic systems were explored to a lesser extent include CO2 reduction, C-H borylation, alkyl amination, and hydroamination reactions. Furthermore, the synthesis and applications of transition metal complexes are covered.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran;
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona, I-70125 Bari, Italy;
| | - Ali Mousavizadeh Mobarakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran;
| |
Collapse
|
2
|
Zhang K, Yao Y, Sun W, Wen R, Wang Y, Sun H, Zhang W, Zhang G, Gao Z. Triazine-wingtips accelerated NHC-Pd catalysed carbonylative Sonogashira cross-coupling reaction. Chem Commun (Camb) 2021; 57:13020-13023. [PMID: 34807198 DOI: 10.1039/d1cc05280b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transmetalation as the rate-limiting step was effectively accelerated by newly designed N-heterocyclic carbenes with triazine wingtips (T-NHC). By using a ppm-level precatalyst T-NHC-Pd (8), the highly efficient coupling of aryl iodide, alkyne and carbon monoxide furnished a variety of ynone compounds. T-NHC-Pd (5), which deprotonated 4-methyl-phenylacetylene under mild conditions, converted into alkynyl-coordinated catalytic active species PdCl(T-NHC)(Py)(alkynyl). In the putative Pd/Pd catalytic cycle, both triazine-wingtips and NHCs are key players for establishing the carbonylative cross-couplings with high TON and TOF.
Collapse
Affiliation(s)
- Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Yanxiu Yao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Wenjin Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Rui Wen
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China. .,School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P. R. China
| |
Collapse
|
3
|
|
4
|
Nahra F, Cazin CSJ. Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands. Chem Soc Rev 2021; 50:3094-3142. [DOI: 10.1039/c8cs00836a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is a critical presentation of catalysts based on palladium and ruthenium bearing N-heterocyclic carbene ligands that have enabled a more sustainable approach to catalysis and to catalyst uses.
Collapse
Affiliation(s)
- Fady Nahra
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Catherine S. J. Cazin
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
5
|
Chen C, Zhou L, Xie B, Wang Y, Ren L, Chen X, Cen B, Lv H, Wang H. Novel fast-acting pyrazole/pyridine-functionalized N-heterocyclic carbene silver complexes assembled with nanoparticles show enhanced safety and efficacy as anticancer therapeutics. Dalton Trans 2020; 49:2505-2516. [PMID: 32022055 DOI: 10.1039/c9dt04751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized four novel multi-nuclear silver complexes (1-4) coordinated with pyrazole- or pyridine-functionalized N-heterocyclic carbene (NHC) ligands. The crystal structures of the silver-NHC complexes were confirmed by X-ray diffraction analysis. In vitro assays showed that the silver-NHC complexes effectively killed a broad range of cancer cells after short-term drug exposure, serving as fast-acting cytotoxic agents. Of note, in cisplatin-resistant A549 cancer cells, the silver complexes were not cross-resistant with the clinically used cisplatin agent. Detailed mechanistic studies revealed that complex 2 triggered caspase-independent cell necrosis associated with intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) depletion. By exploiting a facile nano-assembly process, silver-NHC complexes 1, 2 and 4 were successfully integrated into the hydrophobic cores of amphiphilic matrices (DSPE-PEG2K), enabling systemic injection. The silver complex-loaded nanotherapeutics (1-NPs, 2-NPs, and 4-NPs) showed high safety margins with reduced systemic drug toxicities relative to cisplatin in animals. Furthermore, in a xenograft model of human colorectal cancer, the administration of the nanotherapeutics resulted in a marked inhibition of tumor progression.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China. and College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Beini Cen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
6
|
Zhou Z, Xie Q, Zhou X, Yuan Y, Pan Y, Lu D, Du Z, Xue J. Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water. Carbohydr Res 2020; 496:108079. [PMID: 32745715 DOI: 10.1016/j.carres.2020.108079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Sugar-based imidazolium salts (IMSs) represent an outstanding type of material making them eye-catching for a wide variety of applications. Herein, a series of glucoside-based IMSs (Glu-IMSs) combining glucoside and imidazolium head groups with different substituents were synthesized. The catalytic activities of these Glu-IMSs were evaluated by Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura reactions in water. Among them, the Glu-IMSs contain both -OH and NHCs coordination sites was found to be the most efficient ancillary ligand in comparison with other Glu-IMSs with just single NHCs coordination site. The HR-TEM analysis showed that the palladium nanoparticles stabilized by the Glu-IMSs with an average size of ~4.0 nm was formed in the reaction system, which may be act as an efficient real catalytic species. Under the optimized reaction conditions, a series of novel fluorine-cored organic small molecule functional materials were synthesized with favorable yields.
Collapse
Affiliation(s)
- Zhonggao Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China.
| | - Qian Xie
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Yangyang Yuan
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Yan Pan
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Dongliang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Ziyi Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China
| | - Jun Xue
- College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou, 341000, PR China.
| |
Collapse
|
7
|
Trzeciak A, Augustyniak A. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Li J, Wang Y, Jiang S, Zhang H. Facile synthesis of magnetic recyclable palladium-gold alloy nanoclusters catalysts PdAur/Fe3O4@LDH and its catalytic applications in Heck reaction. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|