1
|
Musarraf Hussain M, Asiri AM, Hasnat MA, Ben Aoun S, Rahman MM. Detection of Acetylcholine in an Enzyme‐Free System Based on a GCE/V2O5 NRs/BPM Modified Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences Jagannath University Dhaka 1100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science Taibah University PO Box 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
2
|
Sensitive detection of Penicillin-G chemical using SnO2.YbO nanomaterials by electrochemical approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Hussain MM, Asiri AM, Uddin J, Rahman MM. Development of L-cysteine sensor based on thallium oxide coupled multi-walled carbon nanotube nanocomposites with electrochemical approach. Chem Asian J 2021; 17:e202101117. [PMID: 34904384 DOI: 10.1002/asia.202101117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Here, Nanocomposites of thallium oxide doped multi-walled carbon nanotube (Tl2O.MWCNT NCs) were prepared by utilizing the wet-chemical method (WCM) in an alkaline phase at low temperature. Different optical procedures (FTIR: Fourier Transform Infra-Red Spectroscopy, XRD: Powder X-ray diffraction, FESEM: Field-Emission Scanning Electron Microscopy, XEDS: X-ray Electron Dispersive Spectroscopy, TEM: Tunneling Electron Microscopy, and XPS: X-ray photoelectron spectroscopy) were used to fully characterize (Optical, structural, crystalline, morphological, and elemental etc.) of the prepared Tl2O.MWCNT NCs. Modification of the thin-layer with NCs onto glassy carbon electrode (GCE) is prepared and applied for the enzyme-free detection of selective and sensitive L-cysteine by electrochemical approach. Using a reliable current-voltage approach, analytical sensing indexes such as sensitivity, LDR, LOD, LOQ, durability, and interference were assessed by fabricated sensor probe (GCE/Tl2O.MWCNT NCs/CPM) in selective detection of L-cysteine in a room condition, whereas nafion was used as conducting polymer matrix (CPM) during the fabrication of GCE with NCs. L-cysteine calibration plot was found to be linear over an extensive range of concentration. The calibration curve was used to calculate the sensing parameters such as sensitivity (316.46 pAμM-1cm-2), LOD down to (~18.90 ± 1.89 pM), and LOQ (63.0 pM) of the prepared sensor. The use of a simple WCM to validate the Tl2O.MWCNT NCs is a good approach for developing a NCs-based sensor for enzyme-free biomolecule identification and detection in the biomedical and health care fields in a broad scale. This proposed sensor (GCE/Tl2O.MWCNT NCs/CPM) is used to detect selective L-cysteine in real biological samples such as human, mouse, and rabbit serum and found acceptable and satisfactory results.
Collapse
Affiliation(s)
| | | | - Jamal Uddin
- Coppin State University, Natural Sciences, UNITED STATES
| | | |
Collapse
|
4
|
Hussain MM, Asiri AM, Uddin J, Rahman MM. An enzyme free simultaneous detection of γ-amino-butyric acid and testosterone based on copper oxide nanoparticles. RSC Adv 2021; 11:20794-20805. [PMID: 35479338 PMCID: PMC9033999 DOI: 10.1039/d1ra02709c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, an easy wet-chemical process was used in basic medium with low temperature to prepare low-dimensional copper oxide nanoparticles (CuO NPs). A variety of optical and structural techniques such as UV-visible, FT-IR, XRD, FESEM, XEDS, and XPS were used to characterize the synthesized CuO NPs in detail. Two sensitive and selective sensor probes for γ-amino-butyric acid (GABA) and testosterone (TST) were achieved after modification; a thin layer of NPs on a flat glassy carbon electrode (GCE). Sensor analytical parameters such as sensitivity (SNT), linear dynamic range (LDR), limit of detection (LOD), limit of quantification (LOQ), robustness, and interference effects, were evaluated for the proposed sensor (GCE/CuO NPs) for GABA and TST, based on a dependable current-voltage technique. Calibration curves were found to be linear (R 2 = 0.9963 and 0.9095) over a broad concentration range of GABA and TST (100.0 pM to 100.0 mM and 10.0 pM to 10.0 mM, respectively). Sensor parameters - SNT (316.46 and 2848.10 pA μM-1 cm-2), LDR (100.0 nM to 10.0 mM and 10.0 pM to 1.0 mM), LOD (≈11.70 and 96.67 pM), and LOQ (39.0 and 322.2 pM) - for GABA and TST were calculated from the calibration plot successively. Preparation of CuO NPs using the wet-chemical technique is a good approach for perspective expansion of NPs-based sensors for the enzyme-free detection of biomolecules. Our sensor probe (GCE/CuO NPs) is applied for the cautious recognition of GABA and TST in real biological samples -human, mouse, and rabbit serum - and achieved good and acceptable results.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia.,Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University Dhaka-1100 Bangladesh
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore MD 21216 USA
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
5
|
Chen R, Wu G, Yang K, Ye B, Chen Q, Wang Z. One-Pot Synthesis of N-Furanonyl Sulfonyl Hydrazone Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Musarraf Hussain M, Asiri AM, Rahman MM. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Arshad MN, Hussain MM, Asiri AM, Khalid M, Braga AA, Rahman MM. A potent synthesis and supramolecular synthon hierarchy percipience of (E)-Nʹ-(Napthalen-1-yl-methylene)-benzenesulfonohydrazide and 1-Napthaldehyde: A combined experimental and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hussain MM, Asiri AM, Rahman MM. Synthesis, characterization, and physicochemical studies of the synthesized dimethoxy-Nʹ-(phenylsulfonyl)-benzenesulfonohydrazide derivatives and used as a probe for calcium ion capturing: Natural sample analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. Synthesis, characterization, and crystal structure of (E)-Nʹ-(4-Bromobenzylidene)-benzenesulfonohydrazide and its application as a sensor of chromium ion detection from environmental samples. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Rahman MM, Hussain MM, Arshad MN, Asiri AM. The synthesis and application of ( E)- N'-(benzo[ d]dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide for the detection of carcinogenic lead. RSC Adv 2020; 10:5316-5327. [PMID: 35498306 PMCID: PMC9049008 DOI: 10.1039/c9ra09080k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, noble ligands of (E)-N'-(benzo[d]dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide (BDMMBSH) were prepared via a simple condensation method using benzo-[d][1,3]-dioxole carbaldehyde, benzenesulfonylhydrazine (BSH), and 4-methyl-benzenesulphonylhydrazine (4-MBSH) in good yield, which were crystallized in acetone, EtOAc, and EtOH. The BDMMBSH derivatives were characterized using different spectroscopic techniques, such as 1H-NMR, 13C-NMR, FTIR, and UV-Vis spectroscopy, and their crystal structures were analyzed using the single crystal X-ray diffraction method (SCXRDM). Subsequently, the BDMMBSH compounds were used for the significant detection of the carcinogenic heavy metal ion, lead (Pb2+), via a reliable electrochemical approach. A sensitive and selective Pb2+ sensor was developed via the deposition of a thin layer of BDMMBSH on a GCE with the conducting polymer matrix Nafion (NF). The sensitivity, LOQ, and LOD of the proposed sensor towards Pb2+ were calculated from the calibration curves to be 2220.0 pA μM-1 cm-2, 320.0 mM, and 96.0 pM, respectively. The validation of the BDMMBSH/GCE/NF sensor probe was performed via the selective determination of Pb2+ in spiked natural samples with a satisfactory and rational outcome.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University Dhaka-1100 Bangladesh
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
11
|
Rahman MM, Ahmed J, Asiri AM, Alamry KA. Fabrication of a hydrazine chemical sensor based on facile synthesis of doped NZO nanostructure materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj02719g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this approach, nickel-doped zinc oxide (NZO) nanostructure materials were synthesized by the solution method in the basic phase.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah
- Saudi Arabia
| | - Jahir Ahmed
- Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology
- Sylhet-3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah
- Saudi Arabia
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah
- Saudi Arabia
| |
Collapse
|
12
|
Rahman MM, Hussain MM, Asiri AM. Enzyme-free detection of uric acid using hydrothermally prepared CuO·Fe 2O 3 nanocrystals. NEW J CHEM 2020. [DOI: 10.1039/d0nj04266h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copper oxide doped iron oxide nanocrystals (CuO·Fe2O3 NCs) were prepared using a simple hydrothermal technique at low temperature in an alkaline medium.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
13
|
Hussain MM, Asiri AM, Rahman MM. A non-enzymatic electrochemical approach for l-lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. NEW J CHEM 2020. [DOI: 10.1039/d0nj01715a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper oxide decorated multi-walled carbon nanotube nanocomposites (CuO·MWCNT NCs) were prepared using a simple wet-chemical technique in basic medium.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| |
Collapse
|
14
|
Hussain MM, Asiri AM, Rahman MM. Simultaneous detection of l-aspartic acid and glycine using wet-chemically prepared Fe3O4@ZnO nanoparticles: real sample analysis. RSC Adv 2020; 10:19276-19289. [PMID: 35515430 PMCID: PMC9054059 DOI: 10.1039/d0ra03263h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
An easy and reliable wet-chemical method was used to synthesize iron oxide doped zinc oxide nanoparticles (Fe3O4@ZnO NPs) at a low-temperature under alkaline medium.
Collapse
Affiliation(s)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
15
|
Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. NANOSCALE ADVANCES 2019; 1:4560-4577. [PMID: 36133111 PMCID: PMC9417062 DOI: 10.1039/c9na00491b] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The present review covers the recent applications of various types of nanomaterials in electrochemical enzyme-based biosensors for the detection of small biomolecules, environmental pollutants, food contaminants, and clinical biomarkers. Benefits and limitations of using nanomaterials for analytical purposes are discussed. Furthermore, we highlight specific properties of different nanomaterials, which are relevant to electrochemical biosensors. The review is structured according to the types of nanomaterials. We describe the application of inorganic nanomaterials, such as gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs), silver nanoparticles (AgNPs), and palladium nanoparticles (PdNPs), zeolites, inorganic quantum dots, and organic nanomaterials, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon and graphene quantum dots, graphene, fullerenes, and calixarenes. Usage of composite nanomaterials is also presented.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Department of Mechanical Engineering, Iowa State University Ames Iowa 50011 USA
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| | - D Yu Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
| | - O V Soldatkina
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
- F. D. Ovcharenko Institute of Biocolloidal Chemistry Acad. Vernadskoho Blvd. 42 Kyiv 03142 Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| |
Collapse
|
16
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. A Thallium Ion Sensor Development Based on the Synthesized (E)‐N′‐(Methoxybenzylidene)‐4‐ Methylbenzenesulfonohydrazide Derivatives: Environmental Sample Analysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201902193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of PharmacyFaculty of Life and Earth SciencesJagannath University Dhaka- 1100, Bangladesh
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
17
|
Khan AAP, Khan A, Alam M, Asiri AM, Uddin J, Rahman MM. SDBS-functionalized MWCNT/poly(o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Rahman MM, Hussain MM, Arshad MN, Awual MR, Asiri AM. Arsenic sensor development based on modification with (E)-N′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. NEW J CHEM 2019. [DOI: 10.1039/c9nj01567a] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(E)-N′-(2-Nitrobenzylidene)-benzenesulfonohydrazide was prepared from 2-nitrobenzaldehyde and benzenesulfonylhydrazine by using a condensation method and applied as a selective As3+ sensor.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Muhammad N. Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| |
Collapse
|
19
|
Rahman MM, Hussain MM, Asiri AM. d-Glucose sensor based on ZnO·V2O5 NRs by an enzyme-free electrochemical approach. RSC Adv 2019; 9:31670-31682. [PMID: 35527960 PMCID: PMC9073342 DOI: 10.1039/c9ra06491e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/21/2019] [Indexed: 11/21/2022] Open
Abstract
A simple wet-chemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment. The synthesized ZnO·V2O5 NRs were characterized using typical methods, including UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). The d-glucose (d-GLC) sensor was fabricated with modification of a slight coating of nanorods (NRs) onto a flat glassy carbon electrode (GCE). The analytical performances, such as the sensitivity, limit of quantification (LOQ), limit of detection (LOD), linear dynamic range (LDR), and durability, of the proposed d-GLC sensor were acquired by a dependable current–voltage (I–V) process. A calibration curve of the GCE/ZnO·V2O5 NRs/Nf sensor was plotted at +1.0 V over a broad range of d-GLC concentrations (100.0 pM–100.0 mM) and found to be linear (R2 = 0.6974). The sensitivity (1.27 × 10−3 μA μM−1 cm−2), LOQ (417.5 mM), and LOD (125 250 μM) were calculated from the calibration curve. The LDR (1.0 μM–1000 μM) was derived from the calibration plot and was also found to be linear (R2 = 0.9492). The preparation of ZnO·V2O5 NRs by a wet-chemical technique is a good advancement for the expansion of nanomaterial-based sensors to support enzyme-free sensing of biomolecules in healthcare fields. This fabricated GCE/ZnO·V2O5 NRs/Nf sensor was used for the recognition of d-glucose in real samples (apple juice, human serum, and urine) and returned satisfactory and rational outcomes. A simple wet-chemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment.![]()
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
20
|
Rahman MM, Alenazi NA, Hussein MA, Alam MM, Alamry KA, Asiri AM. Nanocomposites-based nitrated polyethersulfone and doped ZnYNiO for selective As3+sensor application. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammed M. Rahman
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah Saudi Arabia
| | - Noof A. Alenazi
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Polymer Chemistry Lab.; Chemistry Department; Faculty of Science; Assiut University; Assiut Egypt
| | - Md Mahmud Alam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet Bangladesh
| | - Khalid A. Alamry
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Abdullah M. Asiri
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|