1
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Najiar LO, Pati BV, Das Adhikari GK, Nanda T, Ravikumar PC. Hydroxy Group-Enabled Regio- and Stereoselective Hydroalkylation of Alkynyl Cyclobutanol via Palladium-Catalyzed C-C Bond Activation of Cyclopropanol: A One-Step Access to Vinyl Cyclobutanols. Org Lett 2024; 26:6314-6319. [PMID: 39038198 DOI: 10.1021/acs.orglett.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The regio-/stereoselective synthesis of vinyl cyclobutanols from alkynyl cyclobutanols is demonstrated. Here, selective C-C bond activation of the cyclopropyl alcohol ring has been achieved in the presence of the cyclobutanol ring. The KIE experiments indicated the noninvolvement of the O-H oxidative addition step in the rate-determining step. Further, the applicability of these vinyl cyclobutanols for the synthesis of 1,4-diketones and 1,6-diketone is demonstrated.
Collapse
Affiliation(s)
- Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Parui N, Mandal T, Maiti S, Dash J. Efficient Synthesis of Cyclohepta[b]indoles and Cyclohepta[b]indole-Indoline Conjugates via RCM, Hydrogenation, and Acid-Catalyzed Ring Expansion: A Biomimetic Approach. Chemistry 2024; 30:e202401059. [PMID: 38623002 DOI: 10.1002/chem.202401059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Cyclohepta[b]indoles, prevalent in natural products and pharmaceuticals, are conventionally accessed via metal or Lewis acid-mediated cycloadditions with prefunctionalized substrates. Our study introduces an innovative sequential catalytic assembly for synthesizing cyclohepta[b]indoles from readily available isatin derivatives. The process involves three catalytic sequences: ring-closing metathesis, catalytic hydrogenation, and acid-catalyzed ring expansion. The RCM of 2,2-dialkene-3-oxindoles, formed by butenyl Grignard addition to 3-allyl-3-hydroxy-2-oxindoles, yields versatile spirocyclohexene-3-oxindole derivatives. These derivatives undergo further transformations, including dibromination, dihydroxylation, epoxidation, Wacker oxidation at the double bond. Hydrogenation of spirocyclohexene-3-oxindole yields spirocyclohexane-3-oxindoles. Their subsequent acid-catalyzed ring expansion/aromatization, dependent on the acid catalyst, results in either cyclohepta[b]indoles or cyclohepta[b]indole-indoline conjugates, adding a unique synthetic dimension. The utility of this methodology is exemplified through the synthesis of an A-FABP inhibitor, showcasing its potential in pharmaceutical applications.
Collapse
Affiliation(s)
- Nabin Parui
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Tirtha Mandal
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Sandip Maiti
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Jyotirmayee Dash
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| |
Collapse
|
4
|
Irie Y, Yokoshima S. Total Synthesis of Putative Melognine. J Am Chem Soc 2024; 146:9526-9531. [PMID: 38546412 DOI: 10.1021/jacs.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Total synthesis of melognine was accomplished. A 10-membered cyclic alkyne was prepared via an intramolecular SN2 reaction of a nosylamide. Enyne metathesis of the cyclic alkyne under an atmosphere of ethylene afforded a 1,3-diene. Intramolecular cycloaddition of a nitrone and an azomethine ylide with the 1,3-diene moiety constructed the characteristic highly fused skeleton. Further transformation, including ring-closing metathesis, resulted in the synthesis of melognine, whose NMR spectra did not match the reported data. Close inspection of the spectra of melognine in the literature suggested that the structure of melognine might be identical with that of a known alkaloid, melodinine L.
Collapse
Affiliation(s)
- Yui Irie
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
5
|
Shinde J, Suresh S, Kavala V, Yao CF. Pd(II)-catalyzed hydroarylations/hydroalkenylations of terminal alkynes: regioselective synthesis of allylic, homoallylic, and 1,3-diene systems. Chem Commun (Camb) 2024; 60:3790-3793. [PMID: 38456475 DOI: 10.1039/d4cc00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A Pd-catalyzed regioselective hydroarylation of terminal alkynes containing a heteroatom has been developed via carbopalladation for the synthesis of allylic ethers, amines, and homoallylic alcohols. Moreover, hydroalkenylation of alkynes produces a variety of stereodefined 1,4-dienes with high regioselectivity. The important features of the present protocol are that it is highly regioselective, operationally rapid, and scalable with a huge substrate scope using only 3 mol% of PdCl2(PPh3)2 catalyst in the presence of a mild base KOAc.
Collapse
Affiliation(s)
- Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
6
|
Liu X, Hao L, Wang Y, Ji Y. Synthesis of β-Hydroxysulfides via Multi-Component Cascade Hydroxysulfenylation of Styrenes with NH 4 SCN and Water under Transition-metal-free Conditions. Chem Asian J 2024; 19:e202300901. [PMID: 37964673 DOI: 10.1002/asia.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Transition-mental-free multi-component hydroxysulfenylation of styrenes with NH4 SCN and water to from β-hydroxysulfides is established. The reaction mechanism proceeded via a domino reaction after a radical addition to 2-phenylimidazo[1,2-a]pyridines. This approach features a wide substrate scope and functional group compatibility, providing 34 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
7
|
Sytniczuk A, Struzik F, Grela K, Kajetanowicz A. A tunable family of CAAC-ruthenium olefin metathesis catalysts modularly derived from a large-scale produced ibuprofen intermediate. Chem Sci 2023; 14:10744-10755. [PMID: 37829018 PMCID: PMC10566500 DOI: 10.1039/d3sc03849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
A series of tunable CAAC-based ruthenium benzylidene complexes with increased lipophilicity derived from a ketone being a large-scale produced key substrate for a popular nonsteroidal anti-inflammatory drug-ibuprofen was obtained and tested in various olefin metathesis transformations. As a group, these catalysts exhibited higher activity than their known analogues containing a smaller and less lipophilic phenyl substituent on the α-carbon atom, but in individual reactions, the size of the N-aryl moiety was revealed as a decisive factor. For example, in the cross-metathesis of methyl oleate with ethylene (ethenolysis)-a reaction with growing industrial potential-the best results were obtained when the N-aryl contained an isopropyl or tert-butyl substituent in the ortho position. At the same time, in the RCM, CM, and self-CM transformations involving larger olefinic substrates, the catalysts with smaller aryl-bearing CAAC ligands, where methyl and ethyl groups occupy ortho, ortho' positions performed better. This offers a great deal of tunability and allows for selection of the best catalyst for a given reaction while keeping the general structure (and manufacturing method) of the ibuprofen-intermediate derived CAAC ligand the same.
Collapse
Affiliation(s)
- Adrian Sytniczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Filip Struzik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
8
|
Kotha S, Mehta G. Molecular Acrobatics in Polycyclic Frames: Synthesis of "Kurmanediol" via Post-synthetic Modification of Cage Molecules by Olefinic Metathesis. J Org Chem 2023; 88:11650-11660. [PMID: 37506281 DOI: 10.1021/acs.joc.3c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We report late-stage ring-opening metathesis (ROM), ring-rearrangement metathesis (RRM), and ring-closing metathesis (RCM) approaches to generate expanded pentacycloundecane (PCUD) cage derivatives. These higher-order intricate polycyclic cage systems are aesthetically pleasing and structurally intriguing. Their assembly maintains molecular symmetry during the entire synthetic sequence. To this end, metathesis-based catalysts are used to execute the ROM, RRM, and RCM strategies. The synthetic approach to these cage polycycles involves the Diels-Alder reaction, [2 + 2] photocycloaddition, RRM, ROM, and RCM as key steps.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Institution Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Gulazarahind Mehta
- Department of Chemistry, Institution Indian Institute of Technology, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Semghouli A, Remete AM, Kiss L. Stereocontrolled synthesis of some novel functionalized heterocyclic amino ester and amide derivatives with multiple stereocenters. RSC Adv 2023; 13:22769-22776. [PMID: 37520097 PMCID: PMC10372476 DOI: 10.1039/d3ra03866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The synthesis of some novel functionalized fused-ring β-amino lactones and lactams with multiple chiral centers has been attempted from readily available strained bicyclic β-amino acids via a stereocontrolled synthetic route. The key step was ring-rearrangement metathesis of allyl/propargyl esters or N-allylated/N-propargylated amides of (oxa)norbornene β-amino acids. The RRM transformations [ring-opening metathesis (ROM)/ring-closing metathesis (RCM) or ring-opening metathesis (ROM)/ring-closing enyne metathesis (RCEYM)] have been investigated using some commercially available catalysts. Importantly, the procedure used in this synthetic process does not affect the configurations of the chiral centers. This means that the structure of the starting (oxa)norbornene β-amino acids predetermines the configuration of the formed products.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
- Institute of Organic Chemistry, Stereochemistry Research Group, Research Centre for Natural Sciences Magyar tudósok krt. 2 H-1117 Budapest Hungary +36-30-1600354
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, Research Centre for Natural Sciences Magyar tudósok krt. 2 H-1117 Budapest Hungary +36-30-1600354
| |
Collapse
|
10
|
Yoshinaga K, Yokoshima S. Convergent synthesis of the [5-7-6-3] tetracyclic core of premyrsinane diterpenes. Org Biomol Chem 2023; 21:724-727. [PMID: 36594461 DOI: 10.1039/d2ob02210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The [5-7-6-3] tetracyclic core of premyrsinane diterpenes was convergently synthesized via the stereoselective three-component coupling of a 2-propenyl unit, an enone, and an aldehyde, followed by the relay ring-closing metathesis with conformation control of the substrate to construct the 7-membered ring.
Collapse
Affiliation(s)
- Kohei Yoshinaga
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
11
|
Semghouli A, Remete AM, Kiss L. Synthesis of New β‐Amino Acid Scaffolds by Means of Ring‐Rearrangement Metathesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202204244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
- Institute of Organic Chemistry Stereochemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 H-1117 Budapest Hungary
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry Stereochemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 H-1117 Budapest Hungary
| |
Collapse
|
12
|
Díaz-Ruiz M, Urbina A, Llor N, Bosch J, Amat M, Maseras F. Origin of the selectivity in the ring-closing metathesis step of the synthesis of (−)-callyspongiolide: Formation of fourteen-versus eight-membered rings. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hui C, Craggs L, Antonchick AP. Ring contraction in synthesis of functionalized carbocycles. Chem Soc Rev 2022; 51:8652-8675. [PMID: 36172989 DOI: 10.1039/d1cs01080h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocycles are a key and widely present structural motif in organic compounds. The construction of structurally intriguing carbocycles, such as highly-strained fused rings, spirocycles or highly-functionalized carbocycles with congested stereocenters, remains challenging in organic chemistry. Cyclopropanes, cyclobutanes and cyclopentanes within such carbocycles can be synthesized through ring contraction. These ring contractions involve re-arrangement of and/or small molecule extrusion from a parental ring, which is either a carbocycle or a heterocycle of larger size. This review provides an overview of synthetic methods for ring contractions to form cyclopropanes, cyclobutanes and cyclopentanes en route to structurally intriguing carbocycles.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. .,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Luke Craggs
- Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. .,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| |
Collapse
|
14
|
Meng H, Bai S, Qiao Y, He T, Li W, Ming J. Rhodium-Catalyzed Three-Component Reaction of Alkynes, Arylzinc Chlorides, and Iodomethanes Producing Trisubstituted/Tetrasubstituted Alkenes with/without 1,4-Migration. Org Lett 2022; 24:5480-5485. [PMID: 35856848 DOI: 10.1021/acs.orglett.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component reaction of alkynes, arylzinc chlorides, and iodomethanes was found to proceed in the presence of a rhodium catalyst to give high yields of trisubstituted/tetrasubstituted alkenes. The usual arylzinc chlorides only gave trisubstituted alkenes, generated through a migratory carbozincation-cross-coupling sequence, where 1,4-Rh migration from an alkenyl carbon to an aryl carbon occurred. In contrast, 5-membered heteroarylzinc chlorides only gave the tetrasubstituted alkenes via a carborhodation-cross-coupling pathway without 1,4-migration.
Collapse
Affiliation(s)
- He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Road South, Chengdu 610041, China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
15
|
Boehm P, Müller P, Finkelstein P, Rivero-Crespo MA, Ebert MO, Trapp N, Morandi B. Mechanistic Investigation of the Nickel-Catalyzed Metathesis between Aryl Thioethers and Aryl Nitriles. J Am Chem Soc 2022; 144:13096-13108. [PMID: 35834613 DOI: 10.1021/jacs.2c01595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional group metathesis is an emerging field in organic chemistry with promising synthetic applications. However, no complete mechanistic studies of these reactions have been reported to date, particularly regarding the nature of the key functional group transfer mechanism. Unraveling the mechanism of these transformations would not only allow for their further improvement but would also lead to the design of novel reactions. Herein, we describe our detailed mechanistic studies of the nickel-catalyzed functional group metathesis reaction between aryl methyl sulfides and aryl nitriles, combining experimental and computational results. These studies did not support a mechanism proceeding through reversible migratory insertion of the nitrile into a Ni-Ar bond and provided strong support for an alternative mechanism involving a key transmetalation step between two independently generated oxidative addition complexes. Extensive kinetic analysis, including rate law determination and Eyring analysis, indicated the oxidative addition complex of aryl nitrile as the resting state of the catalytic reaction. Depending on the concentration of aryl methyl sulfide, either the reductive elimination of aryl nitrile or the oxidative addition into the C(sp2)-S bond of aryl methyl sulfide is the turnover-limiting step of the reaction. NMR studies, including an unusual 31P-2H HMBC experiment using deuterium-labeled complexes, unambiguously demonstrated that the sulfide and cyanide groups exchange during the transmetalation step, rather than the two aryl moieties. In addition, Eyring and Hammett analyses of the transmetalation between two Ni(II) complexes revealed that this central step proceeds via an associative mechanism. Organometallic studies involving the synthesis, isolation, and characterization of all putative intermediates and possible deactivation complexes have further shed light on the reaction mechanism, including the identification of a key deactivation pathway, which has led to an improved catalytic protocol.
Collapse
Affiliation(s)
- Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Ogura R, Satoh K, Kiuchi W, Kato K, Ikeuchi K, Suzuki T, Tanino K. Two-Step Method for Constructing a Quaternary Carbon Atom with a Geminal Divinyl Group from a Ketone. Org Lett 2022; 24:5040-5044. [DOI: 10.1021/acs.orglett.2c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryota Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuto Satoh
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Wataru Kiuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kosuke Kato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
17
|
Jahan N, Das A, Ansary I. Synthesis of Dibenzo‐Fused 15‐Membered Dioxa‐ketone Macrocycles through Ring‐Closing Metathesis Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nasrin Jahan
- Department of Chemistry The University of Burdwan Burdwan 713104 India
| | - Arijit Das
- Department of Chemistry The University of Burdwan Burdwan 713104 India
| | - Inul Ansary
- Department of Chemistry The University of Burdwan Burdwan 713104 India
| |
Collapse
|
18
|
Abstract
We report a total synthesis of the Myrioneuron alkaloid myrioneurinol enabled by the recognition of hidden symmetry within its polycyclic structure. Our approach traces myrioneurinol's complex framework back to a symmetrical diketone precursor, a double reductive amination of which forges its central piperidine unit. By employing an inexpensive chiral amine in this key desymmetrizing event, four stereocenters of the natural product including the core quaternary stereocenter are set in an absolute sense, providing the first asymmetric entry to this target. Other noteworthy strategic maneuvers include utilizing a bicyclic alkene as a latent cis-1,3-bis(hydroxymethyl) synthon and a topologically controlled alkene hydrogenation. Overall, our synthesis proceeds in 18 steps and ∼1% yield from commercial materials.
Collapse
Affiliation(s)
- Jake M Aquilina
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
19
|
Zhao Y, Liu C, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022; 61:e202202674. [DOI: 10.1002/anie.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chen‐Fei Liu
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Leroy Qi Hao Lin
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| |
Collapse
|
20
|
Unsworth WP, Stephens TC. Strategies for the Synthesis of Heterocyclic Macrocycles and Medium‐Sized Rings. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (-)-Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022; 61:e202202549. [PMID: 35243740 DOI: 10.1002/anie.202202549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/25/2022]
Abstract
Tetrahydropyran-containing macrolactones were synthesized by integrating Meyer-Schuster rearrangement, macrocyclic ring-closing metathesis, and transannular oxa-Michael addition under gold and ruthenium catalysis. Single-step access to a variety of 14- to 20-membered macrolactones containing a tetrahydropyran ring was possible from readily available linear precursors in good yields and with moderate to excellent diastereoselectivity. A 13-step synthesis of (-)-exiguolide, an anticancer marine macrolide, showcased the feasibility of our tandem reaction sequence for macrolactone synthesis and also demonstrated the power of transannular reactions for rapid assembly of the tetrahydropyran rings of the target natural product.
Collapse
Affiliation(s)
- Daichi Mizukami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kei Iio
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yu Onodera
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 981-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
22
|
Tyszka-Gumkowska A, Purohit VB, Nienałtowski T, Dąbrowski M, Kajetanowicz A, Grela K. Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. iScience 2022; 25:104131. [PMID: 35434568 PMCID: PMC9010768 DOI: 10.1016/j.isci.2022.104131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Olefin metathesis reactions of diverse polyfunctional substrates were conducted in water emulsions using two hydrophobic ruthenium catalysts in the presence of air. Instead of using surfactants to increase the efficiency of the metathesis reaction in water, ultrasound and microwave techniques were tested on a small-scale reaction, whereas conventional heating and mechanical stirring were effective enough to provide high conversion and selectivity on a larger scale. The developed conditions extend known protocols for the aqueous metathesis methodology, utilizing relatively low catalyst loadings and allowing for simple product isolation and purification. The established synthetic protocol was successfully adopted in the large-scale synthesis of a pharmaceutically related product – sildenafil (Viagra) derivative. Sustainable approach for metathesis reaction in water emulsion system on air. Utilization of enabling techniques for boosting metathesis under aqueous conditions. RCM of medically important sildenafil derivative.
Collapse
Affiliation(s)
- Agata Tyszka-Gumkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Vishal B Purohit
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Nienałtowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Polpharma SA Pharmaceutical Works, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Michał Dąbrowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
23
|
Zhao Y, Liu CF, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunlong Zhao
- National University of Singapore Chemistry SINGAPORE
| | - Chen-Fei Liu
- National University of Singapore Chemistry SINGAPORE
| | | | | | - Ming Joo Koh
- National University of Singapore Chemistry S9-14-01D, 4 Science Drive 2 117544 Singapore SINGAPORE
| |
Collapse
|
24
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (−)‐Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daichi Mizukami
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Kei Iio
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Mami Oda
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Yu Onodera
- Tohoku University - Katahira Campus: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Haruhiko Fuwa
- Chuo University Department of Applied Chemistry 1-13-27 KasugaBunkyo-ku 112-8551 Tokyo JAPAN
| |
Collapse
|
25
|
Phatake RS, Nechmad NB, Reany O, Lemcoff NG. Highly Substrate‐Selective Macrocyclic Ring Closing Metathesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravindra S. Phatake
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
- Department of Natural and Life Sciences The Open University of Israel Ra'anana 4353701 Israel
| | - Noy B. Nechmad
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Ofer Reany
- Department of Natural and Life Sciences The Open University of Israel Ra'anana 4353701 Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
- Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
26
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
27
|
Abstract
![]()
The marine natural
product scabrolide A was obtained by isomerization
of the vinylogous 1,4-diketone entity of nominal scabrolide B as the
purported pivot point of the biosynthesis of these polycyclic norcembranoids.
Despite the success of this maneuver, the latter compound itself turned
out not to be identical with the natural product of that name. The
key steps en route to the carbocyclic core of these targets were a
[2,3]-sigmatropic rearrangement of an allylic sulfur ylide to forge
the overcrowded C12–C13 bond, an RCM reaction to close the
congested central six-membered ring, and a hydroxy-directed epoxidation/epoxide
opening/isomerization sequence to set the “umpoled”
1,4-dicarbonyl motif and the correct angular configuration at C12.
Collapse
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
28
|
Ring-closing metathesis in the synthesis of fused indole structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Fuwa H. Total Synthesis of (−)-Exiguolide, a Potent Anticancer Marine Macrolide. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Ye Z, Zhu R, Wang F, Jiang H, Zhang F. Electrochemical Difunctionalization of Styrenes via Chemoselective Oxo-Azidation or Oxo-Hydroxyphthalimidation. Org Lett 2021; 23:8240-8245. [PMID: 34697944 DOI: 10.1021/acs.orglett.1c02991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atom- and step-economic oxo-azidation and oxo-hydroxyphthalimidation of styrenes have been developed under mild electrolytic conditions, respectively. Various valuable alpha-azido or hydroxyphthalimide aromatic ketones were synthesized efficiently from readily available styrenes, azides, and N-hydroxyphthalimides. Mechanism studies show that two different pathways involved in these two transformations.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rongjin Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Haobin Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
31
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
32
|
Kuranaga T, Tamura M, Ikeda H, Terada S, Nakagawa Y, Kakeya H. Identification and Total Synthesis of an Unstable Anticancer Macrolide Presaccharothriolide Z Produced by Saccharothrix sp. A1506. Org Lett 2021; 23:7106-7111. [PMID: 34436915 DOI: 10.1021/acs.orglett.1c02506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Saccharothriolides A-F are 10-membered microbial macrolides proposed to be generated from their precursors presaccharothriolides X-Z. Previously, we isolated presaccharothriolide X, and its unique natural prodrug-like properties have intrigued us. However, the other congeners were not detected. Herein, we detected presaccharothriolide Z using our highly sensitive labeling reagent. Moreover, chemical synthesis of presaccharothriolide Z, the first total synthesis of saccharothriolide-class macrolides, was achieved, and the structure and biological activity of presaccharothriolide Z were determined.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miho Tamura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sakahiro Terada
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Nakagawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Semghouli A, Benke Z, Remete AM, Novák TT, Fustero S, Kiss L. Selective Transformation of Norbornadiene into Functionalized Azaheterocycles and β-Amino Esters with Stereo- and Regiocontrol. Chem Asian J 2021; 16:3873-3881. [PMID: 34498420 DOI: 10.1002/asia.202100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Indexed: 11/06/2022]
Abstract
Novel functionalized azaheterocycles with multiple chiral centers have been accessed from readily available norbornene β-amino acids or β-lactams across a stereocontrolled synthetic route, based on ring-opening metathesis (ROM) of the staring unsaturated bicyclic amino esters, followed by selective cyclization through ring-closing metathesis (RCM). The RCM transformations have been studied under various experimental conditions to assess the scope of conversion, catalyst, yield, and substrate influence. The structure of the starting norbornene β-amino acids predetermined the structure of the new azaheterocycles, and the developed synthetic route took place with the conservation of the configuration of the chiral centers.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Tamás T Novák
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100-Burjassot, Valencia, Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
34
|
Benke Z, Remete AM, Kiss L. A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines. Beilstein J Org Chem 2021; 17:2051-2066. [PMID: 34457076 PMCID: PMC8372314 DOI: 10.3762/bjoc.17.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/31/2021] [Indexed: 01/13/2023] Open
Abstract
This work presents an examination of the selective functionalization of norbornadiene through nitrile oxide 1,3-dipolar cycloaddition/ring-opening metathesis (ROM)/cross-metathesis (CM) protocols. Functionalization of commercially available norbornadiene provided novel bicyclic scaffolds with multiple stereogenic centers. The synthesis involved selective cycloadditions, with subsequent ROM of the formed cycloalkene-fused isoxazoline scaffolds and selective CM by chemodifferentiation of the olefin bonds of the resulting alkenylated derivatives. Various experimental conditions were applied for the CM transformations with the goal of exploring substrate and steric effects, catalyst influence and chemodifferentiation of the olefin bonds furnishing the corresponding functionalized, fluorine-containing isoxazoline derivatives.
Collapse
Affiliation(s)
- Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
35
|
Yagita R, Irie K, Tsukano C. Studies Toward the Total Synthesis of Schinortriterpenoids: Diastereoselective Synthesis of the Left‐Hand Fragment. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryotaro Yagita
- Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Chihiro Tsukano
- Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
36
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
37
|
Benke Z, Remete AM, Semghouli A, Kiss L. Selective Functionalization of Norbornadiene Through Nitrile Oxide Cycloaddition/Ring‐Opening/Cross‐Metathesis Protocols. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zsanett Benke
- Institute of Pharmaceutical Chemistry University of Szeged H-6720 Szeged Eötvös u. 6 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry H-6720 Szeged Eötvös u. 6 Hungary
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged H-6720 Szeged Eötvös u. 6 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry H-6720 Szeged Eötvös u. 6 Hungary
| | - Anas Semghouli
- Institute of Pharmaceutical Chemistry University of Szeged H-6720 Szeged Eötvös u. 6 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry H-6720 Szeged Eötvös u. 6 Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry University of Szeged H-6720 Szeged Eötvös u. 6 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry H-6720 Szeged Eötvös u. 6 Hungary
| |
Collapse
|
38
|
Lam NYS, Stockdale TP, Anketell MJ, Paterson I. Conquering peaks and illuminating depths: developing stereocontrolled organic reactions to unlock nature's macrolide treasure trove. Chem Commun (Camb) 2021; 57:3171-3189. [PMID: 33666631 DOI: 10.1039/d1cc00442e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural complexity and biological importance of macrolide natural products has inspired the development of innovative strategies for their chemical synthesis. With their dense stereochemical content, high level of oxygenation and macrocyclic cores, we viewed the efficient total synthesis of these valuable compounds as an aspirational driver towards developing robust methods and strategies for their construction. Starting out from the initial development of our versatile asymmetric aldol methodology, this personal perspective reflects on an adventurous journey, with all its trials, tribulations and serendipitous discoveries, across the total synthesis, in our group, of a representative selection of six macrolide natural products of marine and terrestrial origin - swinholide A, spongistatin 1, spirastrellolide A, leiodermatolide, chivosazole F and actinoallolide A.
Collapse
Affiliation(s)
- Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
39
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
40
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
41
|
Belov DS, Tejeda G, Tsay C, Bukhryakov KV. Ring‐Closing Olefin Metathesis Catalyzed by Well‐Defined Vanadium Alkylidene Complexes. Chemistry 2021; 27:4578-4582. [DOI: 10.1002/chem.202005438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Dmitry S. Belov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Gabriela Tejeda
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Charlene Tsay
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| |
Collapse
|
42
|
Pharande SG. The Merger of Isocyanide‐Based Multicomponent Reaction and Ring‐Closing Metathesis (IMCR/RCM). ChemistrySelect 2021. [DOI: 10.1002/slct.202004131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Nienałtowski T, Krzesiński P, Baumert ME, Skoczeń A, Suska-Kauf E, Pawłowska J, Kajetanowicz A, Grela K. 4-Methyltetrahydropyran as a Convenient Alternative Solvent for Olefin Metathesis Reaction: Model Studies and Medicinal Chemistry Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:18215-18223. [PMID: 33344098 PMCID: PMC7739489 DOI: 10.1021/acssuschemeng.0c06668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Indexed: 05/03/2023]
Abstract
A number of metathesis reactions were successfully conducted in 4-methyltetrahydropyran, including both standard model dienes, as well as more complex substrates, such as analogues of biologically active compounds and active pharmaceutical ingredients. To place this solvent in a context of pharmaceutical R + D, larger-scale syntheses of SUAM 1221, a prolyl endopeptidase inhibitor with potential application in Alzheimer disease treatment, and a derivative of sildenafil, an analogue of the popular Viagra drug, were executed. In the latter case, despite all the setup being made in air, the metathesis reaction at a 33 g scale proceeded very well with relatively low catalyst loading and without need of aqueous workup or column chromatography.
Collapse
Affiliation(s)
- Tomasz Nienałtowski
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Pharmaceutical
Works Polpharma SA, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Paweł Krzesiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Marcel E. Baumert
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Aleksandra Skoczeń
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Suska-Kauf
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jolanta Pawłowska
- Pharmaceutical
Works Polpharma SA, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Anna Kajetanowicz
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
44
|
Kumandin PA, Antonova AS, Alekseeva KA, Nikitina EV, Novikov RA, Vasilyev KA, Sinelshchikova AA, Grigoriev MS, Polyanskii KB, Zubkov FI. Influence of the N→Ru Coordinate Bond Length on the Activity of New Types of Hoveyda–Grubbs Olefin Metathesis Catalysts Containing a Six-Membered Chelate Ring Possessing a Ruthenium–Nitrogen Bond. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pavel A. Kumandin
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Alexandra S. Antonova
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Kseniia A. Alekseeva
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Eugeniya V. Nikitina
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry of RAS, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Kirill A. Vasilyev
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Anna A. Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, bld. 4, Moscow 119071, Russian Federation
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, bld. 4, Moscow 119071, Russian Federation
| | - Kirill B. Polyanskii
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Fedor I. Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| |
Collapse
|
45
|
Maraswami M, Goh J, Loh TP. Macrolactam Synthesis via Ring-Closing Alkene-Alkene Cross-Coupling Reactions. Org Lett 2020; 22:9724-9728. [PMID: 33258611 DOI: 10.1021/acs.orglett.0c03801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a practical method for macrolactam synthesis via a Rh(III)-catalyzed ring closing alkene-alkene cross-coupling reaction. The reaction proceeded via a Rh-catalyzed alkenyl sp2 C-H activation process, which allows access to macrocyclic molecules of different ring sizes. Macrolactams containing a conjugated diene framework could be easily prepared in high chemoselectivities and Z,E stereoselectivities.
Collapse
Affiliation(s)
- Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Jeffrey Goh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
46
|
Anketell MJ, Sharrock TM, Paterson I. Total synthesis of the actinoallolides and a designed photoaffinity probe for target identification. Org Biomol Chem 2020; 18:8109-8118. [PMID: 33015697 DOI: 10.1039/d0ob01831g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The actinoallolides are a family of polyketide natural products isolated from the bacterium Actinoallomurus fulvus. They show potent biological activity against trypanosomes, the causative agents of the neglected tropical diseases human African trypanosomiasis (sleeping sickness) and Chagas disease, while exhibiting no cytotoxicity against human cell lines. Herein, we give a full account of our strategy evolution towards the synthesis of this structurally unique class of 12-membered macrolides, which culminated in the first total synthesis of (+)-actinoallolide A in 20 steps and 8% overall yield. Subsequent late-stage diversification then provided ready access to the congeneric (+)-actinoallolides B-E. Enabled by this flexible and efficient endgame sequence, we also describe the design and synthesis of a photoaffinity probe based on actinoallolide A to investigate its biological mode of action. This will allow ongoing labelling studies to identify their protein binding target(s).
Collapse
Affiliation(s)
- Matthew J Anketell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, UK
| | - Theodore M Sharrock
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, UK
| | - Ian Paterson
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, UK
| |
Collapse
|
47
|
Abstract
Streptogramins are antibiotics produced by several species of Streptomyces bacteria that are used in both human and veterinary medicine. Group A streptogramins comprise 23-membered macrocyclic polyketide/nonribosomal peptide hybrids for which several innovative, fully synthetic routes have been developed. Herein we describe in detail our scalable routes to natural group A streptogramins and compare these routes to other reported syntheses.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
48
|
Planer S, Małecki P, Trzaskowski B, Kajetanowicz A, Grela K. Sterically Tuned N-Heterocyclic Carbene Ligands for the Efficient Formation of Hindered Products in Ru-Catalyzed Olefin Metathesis. ACS Catal 2020; 10:11394-11404. [PMID: 33123411 PMCID: PMC7587146 DOI: 10.1021/acscatal.0c02770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Indexed: 11/28/2022]
Abstract
Formation of tetrasubstituted C-C double bonds via olefin metathesis is considered very challenging for classical Ru-based complexes. In the hope to improve this condition, three ruthenium olefin metathesis catalysts bearing sterically reduced N-heterocyclic carbene (NHC) ligands with xylyl "arms" were synthesized, characterized using both computational and experimental techniques, and tested in a number of challenging reactions. The catalysts are predicted to initiate much faster than the analogue with mesityl N-substituents. We also foreboded the rotation of xylyl side groups at ambient temperature and the existence of all four atropoisomers in the solution, which was in agreement with experimental data. These catalysts exhibited high activity at relatively low temperatures (45-60 °C) and at reduced catalyst loadings in various reactions of sterically hindered alkenes, including complex polyfunctional substrates of pharmaceutical interest, such as yangonin precursors, chrysantemic acid derivatives, analogues of cannabinoid agonists, α-terpineol, and finally a thermally unstable peroxide.
Collapse
Affiliation(s)
- Sebastian Planer
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Małecki
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
49
|
Waser P, Altmann K. Die Totalsynthese des Antibiotikums Disciformycin B durch Ringschlussmetathese. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Waser
- ETH Zürich Departement Chemie und Angewandte Biowissenschaften Institut für Pharmazeutische Wissenschaften HCl H405, Vladimir-Prelog-Weg 4 CH-8093 Zürich Schweiz
| | - Karl‐Heinz Altmann
- ETH Zürich Departement Chemie und Angewandte Biowissenschaften Institut für Pharmazeutische Wissenschaften HCl H405, Vladimir-Prelog-Weg 4 CH-8093 Zürich Schweiz
| |
Collapse
|
50
|
Waser P, Altmann K. An RCM‐Based Total Synthesis of the Antibiotic Disciformycin B. Angew Chem Int Ed Engl 2020; 59:17393-17397. [DOI: 10.1002/anie.202004589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Philipp Waser
- ETH Zürich Department of Chemistry and Applied Biosciences Institute of Pharmaceutical Sciences HCl H405, Vladimir-Prolog-Weg 4 CH-8093 Zürich Switzerland
| | - Karl‐Heinz Altmann
- ETH Zürich Department of Chemistry and Applied Biosciences Institute of Pharmaceutical Sciences HCl H405, Vladimir-Prolog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|