1
|
Fialho L, Costa-Barbosa A, Sampaio P, Carvalho S. Effects of Zn-ZnO Core-Shell Nanoparticles on Antimicrobial Mechanisms and Immune Cell Activation. ACS APPLIED NANO MATERIALS 2023; 6:17149-17160. [PMID: 37772266 PMCID: PMC10526648 DOI: 10.1021/acsanm.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
The deposition of zinc-zinc oxide nanoparticles (Zn-ZnO NPs) onto porous Ta2O5 surfaces enriched with calcium phosphate by DC magnetron sputtering was investigated to improve the surface antimicrobial activity without triggering an inflammatory response. Different sizes and amounts of Zn NPs obtained by two optimized different depositions and an additional thin carbon (C) layer deposited over the NPs were explored. The deposition of the Zn NPs and the C layer mitigates the surface porosity, increasing the surface hydrophobicity and decreasing the surface roughness. The possible antimicrobial effect and immune system activation of Zn-ZnO NPs were investigated in Candida albicans and macrophage cells, respectively. It was found that the developed surfaces displayed a fungistatic behavior, as they impair the growth of C. albicans between 5 and 24 h of culture. This behavior was more evident on the surfaces with bigger NPs and the highest amounts of Zn. The same trend was observed in both reactive oxygen species (ROS) generation and loss of C. albicans' membrane integrity. After 24 h of culture, cell toxicity was also dependent on the amount of the NPs. Cell toxicity was observed in surfaces with the highest amount of Zn NPs and with the C layer, while cells were able to grow without any signs of cytotoxicity in the porous surfaces with the lowest amount of NPs. The same Zn-dose-dependent behavior was noticed in the TNF-α production. The Zn-containing surfaces show a vastly inferior cytokine secretion than the lipopolysaccharide (LPS)-stimulated cells, indicating that the modified surfaces do not induce an inflammatory response from macrophage cells. This study provides insights for understanding the Zn amount threshold that allows a simultaneous inhibition of the fungi growth with no toxic effect and the main antimicrobial mechanisms of Zn-ZnO NPs, contributing to future clinical applications.
Collapse
Affiliation(s)
- Luísa Fialho
- CEMMPRE,
Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra, Portugal
| | - Augusto Costa-Barbosa
- CBMA,
Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Paula Sampaio
- CBMA,
Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Sandra Carvalho
- CEMMPRE,
Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra, Portugal
- IPN
− LED & MAT − Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
2
|
Zheng B, Kou X, Liu C, Wang Y, Yu Y, Ma J, Liu Y, Xue Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem 2023; 407:135099. [PMID: 36508864 DOI: 10.1016/j.foodchem.2022.135099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
With higher demands for food packaging and the development of nanotechnology, nanopackaging is becoming a research hotspot in the field of food packaging because of its superb preservation effect, and it can effectively resist oxidation and regulates energy metabolism to maintain the quality and prolong the shelf life of mushrooms. Furthermore, under the background of SARS-CoV-2 pandemic, nanomaterials could be a potential tool to prevent virus transmission because of their excellent antiviral activities. However, the investigation and application of nanopackaging are facing many challenges including costs, environmental pollution, poor in-depth genetic research for mechanisms and so on. This article reviews the preservation effect and mechanisms of nanopackaging on the quality of mushrooms and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Dynamiker Biotechnology(Tianjin) Co., Ltd., China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Figueroa-Lopez KJ, Prieto C, Pardo-Figuerez M, Cabedo L, Lagaron JM. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:823. [PMID: 36903702 PMCID: PMC10004799 DOI: 10.3390/nano13050823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food quality is mainly affected by oxygen through oxidative reactions and the proliferation of microorganisms, generating changes in its taste, odor, and color. The work presented here describes the generation and further characterization of films with active oxygen scavenging properties made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) loaded with cerium oxide nanoparticles (CeO2NPs) obtained by electrospinning coupled to a subsequent annealing process, which could be used as coating or interlayer in a multilayer concept for food packaging applications. The aim of this work is to explore the capacities of these novel biopolymeric composites in terms of O2 scavenging capacity, as well as antioxidant, antimicrobial, barrier, thermal, and mechanical properties. To obtain such biopapers, different ratios of CeO2NPs were incorporated into a PHBV solution with hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The produced films were analyzed in terms of antioxidant, thermal, antioxidant, antimicrobial, optical, morphological and barrier properties, and oxygen scavenging activity. According to the results, the nanofiller showed some reduction of the thermal stability of the biopolyester but exhibited antimicrobial and antioxidant properties. In terms of passive barrier properties, the CeO2NPs decreased the permeability to water vapor but increased the limonene and oxygen permeability of the biopolymer matrix slightly. Nevertheless, the oxygen scavenging activity of the nanocomposites showed significant results and improved further by incorporating the surfactant CTAB. The PHBV nanocomposite biopapers developed in this study appear as very interesting constituents for the potential design of new active organic recyclable packaging materials.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Castro A, Calderon S, Marques L. Oxygen Adsorption on Polar and Non-Polar Zn:ZnO Heterostructures from First Principles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1275. [PMID: 36770281 PMCID: PMC9919104 DOI: 10.3390/ma16031275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Zn:ZnO nanostructures have been studied extensively due to their potential use in many applications, such as oxygen scavengers for food packaging applications. Under atmospheric conditions, ZnO grows on the surface of Zn via an oxidation process. The mechanisms governing Zn oxidation are still not fully understood, with classical oxidation models, such as the Cabrera Mott, underestimating the oxide thickness of Zn:ZnO core-shell structures. In this work, Ab initio DFT calculations were performed to assess the adsorption properties of oxygen molecules on Zn:ZnO heterostructures to help elucidate the mechanisms involved in the growth of a ZnO film on a Zn substrate. Results suggest that the charge transfer mechanism from the Zn:ZnO heterostructures to the adsorbed oxygen layer can be promoted by two different processes: the electronic doping of ZnO due to the formation of the Zn:ZnO interface and the excess surface charge due to the presence of dangling bonds on the as cleaved ZnO.
Collapse
Affiliation(s)
- António Castro
- Center of Physics of Minho and Porto Universities, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Sebastian Calderon
- INL, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Luís Marques
- Center of Physics of Minho and Porto Universities, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Lamsaf H, Ballesteros LF, Cerqueira MA, Teixeira JA, Pastrana LM, Rebouta L, Carvalho S, Calderon S. Zn and Zn-Fe Nanostructures with Multifunctional Properties as Components for Food Packaging Materials. NANOMATERIALS 2022; 12:nano12122104. [PMID: 35745443 PMCID: PMC9230730 DOI: 10.3390/nano12122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Metallic and bimetallic nanostructures have shown interesting chromatic and antibacterial properties, and they can be used in various applications. In this work, zinc (Zn) and iron (Fe) nanostructures were produced with different morphologies: (i) pure Zn; (ii) Zn-Fe nanoalloys; (iii) Zn-Fe nanolayers (Zn-Fe NLs); and (iv) Zn nanolayers combined with Fe nanoparticles (Zn NLs + Fe NPs). The aim was to produce components for food packaging materials with active and intelligent properties, including oxygen absorption capacity, chromatic properties, and antibacterial properties. Thus, the morphology, structure, and chemical composition of the samples were characterized and correlated with their oxidation, chromatic, and antibacterial properties. The results revealed a relevant reduction in the coating’s opacity after oxidation varying from 100 to 10% depending on the morphology of the system. All coatings exhibited significant antibacterial activity against S. aureus, revealing a direct correlation with Zn content. The incorporation of Fe for all atomic arrangements showed a negative impact on the antibacterial effect against E. coli, decreasing to less than half the zone of inhibition for Zn-Fe NLs and Zn NLs + Fe NPs and suppressing the antibacterial effect for Zn-Fe alloy when compared with the pure Zn system.
Collapse
Affiliation(s)
- Hafsae Lamsaf
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus of Azurém, 4800-058 Guimarães, Portugal; (H.L.); (L.R.)
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.C.); (L.M.P.)
| | - Lina F. Ballesteros
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (L.F.B.); (J.A.T.)
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.C.); (L.M.P.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (L.F.B.); (J.A.T.)
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Lorenzo M. Pastrana
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.C.); (L.M.P.)
| | - Luís Rebouta
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus of Azurém, 4800-058 Guimarães, Portugal; (H.L.); (L.R.)
| | - Sandra Carvalho
- CEMMPRE, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra, Portugal;
| | - Sebastian Calderon
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus of Azurém, 4800-058 Guimarães, Portugal; (H.L.); (L.R.)
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.C.); (L.M.P.)
- Correspondence:
| |
Collapse
|
7
|
Pourshahbazi H, Javanmard dakheli M, Salehirad A, farhadi S. Novel oxygen scavenger screw-cap for shelf-life improvement in virgin olive oil packaging during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Nikolic MV, Vasiljevic ZZ, Auger S, Vidic J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Fialho L, Grenho L, Fernandes MH, Carvalho S. Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111761. [PMID: 33545902 DOI: 10.1016/j.msec.2020.111761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023]
Abstract
Implant surfaces with cytocompatible and antibacterial properties are extremely desirable for the prevention of implant's infection and the promotion of osseointegration. In this work, both micro-arc oxidation (MAO) and DC magnetron sputtering techniques were combined in order to endow tantalum-based surfaces with osteoblastic cytocompatibility and antibacterial activity. Porous Ta2O5 layers containing calcium (Ca) and phosphorous (P) were produced by MAO (TaCaP) to mimic the bone tissue morphology and chemical composition (Ca/P ratio close to 1.67). Furthermore, zinc (Zn) nanoparticles were deposited onto the previous surfaces by DC magnetron sputtering without or with an additional thin carbon layer deposited over the nanoparticles (respectively, TaCaP-Zn and TaCaP-ZnC) to control the Zn ions (Zn2+) release. Before osteoblastic cell seeding, the surfaces were leached for three time-points in PBS. All modified samples were cytocompatible. TaCaP-Zn slightly impaired cell adhesion but this was improved in the samples leached for longer immersion times. The initial cell adhesion was clearly improved by the deposition of the carbon layer on the Zn nanoparticles, which also translated to a higher proliferation rate. Both Zn-containing surfaces presented antibacterial activity against S. aureus. The two surfaces were active against planktonic bacteria, and TaCaP-Zn also inhibited sessile bacteria. Attributing to the excellent in vitro performance of the nanostructured Ta surface, with osteoconductive elements by MAO followed by antimicrobial nanoparticles incorporation by magnetron sputtering, this work is clearly a progress on the strategy to develop a new generation of dental implants.
Collapse
Affiliation(s)
- Luísa Fialho
- CFUM-UP, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-392 Porto, Portugal; LAQV/REQUIMTE, U. Porto, 4160-007 Porto, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-392 Porto, Portugal; LAQV/REQUIMTE, U. Porto, 4160-007 Porto, Portugal
| | - Sandra Carvalho
- CFUM-UP, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; SEG-CEMMPRE Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra. Portugal
| |
Collapse
|
10
|
Kopyra J, Rabilloud F, Abdoul-Carime H. Decomposition of Bis(acetylacetonate)zinc(II) by Slow Electrons. Inorg Chem 2020; 59:12788-12792. [PMID: 32830979 DOI: 10.1021/acs.inorgchem.0c01842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The production of zinc-containing nanostructures has a large variety of applications. Using electron beam techniques to degrade organometallic molecules for that purpose is perhaps one of the most versatile methods. In this work, we investigate the scattering of low-energy (<12 eV) electrons with bis(acetylacetonate)zinc(II) molecules. We show that core excited and high-lying shape resonances are mainly responsible for the production of the precursor anions as well as the ligand negative fragments, which are observed exclusively at electron energies of >3 eV. The mechanisms for electron capture and then molecular dissociation are discussed in terms of density functional theory studies.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Franck Rabilloud
- Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS, Institut Lumiere Matiere, UMR5306, F-69622 Villeurbanne, France
| | - Hassan Abdoul-Carime
- Universite de Lyon, Universite Lyon 1, Institut de Physique des 2 Infinis, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
11
|
Pang C, Li R, Li Z, Dong N, Wang J, Ren F, Chen F. Plasmonic Ag nanoparticles embedded in lithium tantalate crystal for ultrafast laser generation. NANOTECHNOLOGY 2019; 30:334001. [PMID: 31013488 DOI: 10.1088/1361-6528/ab1b97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the Ag nanoparticles (NPs) embedded in LiTaO3 (AgNP:LT) by direct Ag+ ion implantation. Transmission electron microscope imaging indicates that the embedded Ag NPs have an average diameter of 3.65 nm. The linear optical absorption spectrum of AgNP:LT peaking at 477 nm is observed owing to the typical effect of localized surface plasmon resonance. Z-scan investigation shows ultrafast saturable absorption of AgNP:LT at the near infrared 1 μm wavelength, which enables AgNP:LT to be a new saturable absorber (SA) for the generation of 1 μm Q-switched mode-locked pulsed laser with pulse duration of 35 ps and repetition rate of 8.74 GHz. This work not only opens a new way to tailor the nonlinearity of LiTaO3 by embedding Ag+ NPs, but also develops AgNP:LT as a new SA for ultrafast laser generation.
Collapse
Affiliation(s)
- Chi Pang
- School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
13
|
Lam J, Lutsko JF. Lattice induced crystallization of nanodroplets: the role of finite-size effects and substrate properties in controlling polymorphism. NANOSCALE 2018; 10:4921-4926. [PMID: 29480297 DOI: 10.1039/c7nr08705e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Targeting specific technological applications requires the control of nanoparticle properties, especially the crystalline polymorph. Freezing a nanodroplet deposited on a solid substrate leads to the formation of crystalline structures. We study the inherent mechanisms underlying this general phenomenon by means of molecular dynamics simulations. Our work shows that different crystal structures can be selected by finely tuning the solid substrate lattice parameter. Indeed, while for our system, face-centered cubic is usually the most preponderant structure, the growth of two distinct polymorphs, hexagonal centered packing and body-centered cubic, was also observed even when the solid substrate was face-centered cubic. Finally, we also demonstrated that the growth of hexagonal centered packing is conditioned by the appearance of large enough body-centered cubic clusters thus suggesting the presence of a cross-nucleation pathway. Our results provide insights into the impact of nanoscale effects and solid substrate properties towards the growth of polymorphic nanomaterials.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | | |
Collapse
|
14
|
Iqbal D, Sarfraz A, Erbe A. Gradient in defect density of ZnO nanorods grown by cathodic delamination, a corrosion process, leads to end-specific luminescence. NANOSCALE HORIZONS 2018; 3:58-65. [PMID: 32254111 DOI: 10.1039/c7nh00111h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ZnO nanorods were grown on a zinc substrate via cathodic delamination of a polymer coating, a tailored corrosion process, at room temperature. A comparison between in situ Raman spectra and post mortem cross sectional analysis by Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy shows that in the initial stages of the synthesis, preferentially defect rich ZnO grows. At later stages, crystalline wurtzite ZnO growth dominates. The result is nanorod arrays consisting of nanorods with a large density of point defects in the ≈500 nm range near the zinc substrate, and low defect density in the regions further away from the interface. The growth, which proceeds over several hours, can be interrupted at any time. Large salt concentrations in the corrosive medium increase the growth rate, but also the amount of point defects. The resulting rods show strongly position-dependent luminescence and Raman spectra. Different luminescence can thus be selectively excited, based on the position of excitation.
Collapse
Affiliation(s)
- Danish Iqbal
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| | | | | |
Collapse
|