1
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Nishida A, Sawada Y, Arai R, Ishibashi N, Suzuo M, Ohno A, Ashikaga T, Iijima K. Evaluation of the immunotoxicity potential of nanomaterials using THP-1 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1293147. [PMID: 39011060 PMCID: PMC11247007 DOI: 10.3389/ftox.2024.1293147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/22/2024] [Indexed: 07/17/2024] Open
Abstract
With the expansion of nanomaterials (NMs) usage, concerns about their toxicity are increasing, and the wide variety of NMs makes it difficult to assess their toxicity. Therefore, the development of a high-throughput, accurate, and certified method to evaluate the immunotoxicity of NMs is required. In this study, we assessed the immunotoxicity potential of various NMs, such as nanoparticles of silver, silica, and titanium dioxide, using the human Cell Line Activation Test (h-CLAT) at the cellular level. After exposure to silver nanoparticle dispersions, the expression levels of CD86 and CD54 increased, suggesting the activation of antigen-presenting cells (APCs) by silver nanoparticles. Quantification of silver ions eluted from silver nanoparticles and the activation of APCs by silver ions suggested that it was due to the release of silver ions. Silica nanoparticles also increased the expression of CD86 and/or CD54, and their activation ability correlated with the synthesis methods and hydrodynamic diameters. The ability of titanium dioxide to activate APCs differed depending on the crystal type and hydrodynamic diameter. These results suggest a potential method to evaluate the immunotoxicity potential of various NMs based on their ability to activate APCs using human monocytic THP-1 cells. This method will be valuable in assessing the immunotoxicity potential and elucidating the immunotoxic mechanisms of NMs.
Collapse
Affiliation(s)
- Asuka Nishida
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Yuka Sawada
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Rion Arai
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Naoki Ishibashi
- College of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Miho Suzuo
- College of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Akiko Ohno
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Takao Ashikaga
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Kazutoshi Iijima
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| |
Collapse
|
3
|
Slimani MA, Cloutier SG, Izquierdo R. Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:886. [PMID: 38786842 PMCID: PMC11124313 DOI: 10.3390/nano14100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition under ambient conditions requires overcoming some challenges to improve stability and efficiency. In this review, we highlight the latest advancements in photonic curing (PC) for perovskite materials, as well as for hole transport layer (HTL) and electron transport layer (ETL) materials. We present how PC parameters can be used to control the optical, electrical, morphological, and structural properties of perovskite HTL and ETL layers. Emphasizing the significance of these advancements for perovskite solar cells could further highlight the importance of this research and underline its essential role in creating more efficient and sustainable solar technology.
Collapse
Affiliation(s)
| | | | - Ricardo Izquierdo
- Département de Génie Électrique, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; (M.A.S.); (S.G.C.)
| |
Collapse
|
4
|
Fu M, Critchley K. Inkjet printing of heavy-metal-free quantum dots-based devices: a review. NANOTECHNOLOGY 2024; 35:302002. [PMID: 38640903 DOI: 10.1088/1361-6528/ad40b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Inkjet printing (IJP) has become a versatile, cost-effective technology for fabricating organic and hybrid electronic devices. Heavy-metal-based quantum dots (HM QDs) play a significant role in these inkjet-printed devices due to their excellent optoelectrical properties. Despite their utility, the intrinsic toxicity of HM QDs limits their applications in commercial products. To address this limitation, developing alternative HM-free quantum dots (HMF QDs) that have equivalent optoelectronic properties to HM QD is a promising approach to reduce toxicity and environmental impact. This article comprehensively reviews HMF QD-based devices fabricated using IJP methods. The discussion includes the basics of IJP technology, the formulation of printable HMF QD inks, and solutions to the coffee ring effect. Additionally, this review briefly explores the performance of typical state-of-the-art HMF QDs and cutting-edge characterization techniques for QD inks and printed QD films. The performance of printed devices based on HMF QDs is discussed and compared with those fabricated by other techniques. In the conclusion, the persisting challenges are identified, and perspectives on potential avenues for further progress in this rapidly developing research field are provided.
Collapse
Affiliation(s)
- Min Fu
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Yang W, Guo Z, Zhao X, Zhang X, List-Kratochvil EJW. Insight into the Types of Alkanolamines on the Properties of Copper(II) Formate-Based Conductive Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7095-7105. [PMID: 38511863 DOI: 10.1021/acs.langmuir.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Conductive inks are one of the most important functional materials for printed flexible electronic devices, and their properties determine the methods of subsequent patterning and metallization. In comparison with copper nanoparticle or nanowire inks, copper particle-free inks employing copper(II) formate (Cuf) as a precursor have attracted the interest of researchers due to their flexibility in preparation, excellent stability, and lower conversion temperature. Alkanolamines can provide Cuf with excellent solubility in alcohols while being less toxic and having a certain reducibility, making them preferable ligands in comparison with aliphatic amines and pyridine. However, there have been few studies on the effects of the alkanolamine types on the performance of Cuf inks. Also, the decomposition mechanism of copper-alkanolamine complex inks is not clear. In this work, different kinds of alkanolamines were chosen as ligands to formulate Cuf inks to address the mentioned issues. The influences of amine types on the stability, wettability, thermal decomposition behavior, and electrical performance of the formulated Cuf particle-free inks were investigated in detail. The results show that the utilization of alkanolamines could provide Cuf with excellent solubility in alcohols, resulting in an ink with good stability and favorable wetting properties. The thermal decomposition temperature and electrical performance of the formulated copper ink are largely dependent on the amine used. When amines with a longer carbon chain and more branches were utilized to prepare the ink, a decreased decomposition temperature was observed on the derived inks because of the steric hindrance effect. Copper films with good morphology and conductivity could be obtained at low temperatures by selecting the appropriate alkanolamine. Copper particle-free conductive ink from 2-amino-2-methyl-1-propanol demonstrated better morphology and electrical performance (16.09 μΩ·cm) and was successfully used for conductive circuits by direct-writing.
Collapse
Affiliation(s)
- Wendong Yang
- School of Electronic and Information Engineering, Liaoning Technical University, Huludao City 125105, China
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Zihao Guo
- School of Electronic and Information Engineering, Liaoning Technical University, Huludao City 125105, China
| | - Xun Zhao
- School of Electronic and Information Engineering, Liaoning Technical University, Huludao City 125105, China
| | - Xiaoyuan Zhang
- School of Electronic and Information Engineering, Liaoning Technical University, Huludao City 125105, China
| | - Emil J W List-Kratochvil
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin 14109, Germany
| |
Collapse
|
7
|
Liu WC, Prentice JCA, Patrick CE, Watt AAR. Enhancing Conductivity of Silver Nanowire Networks through Surface Engineering Using Bidentate Rigid Ligands. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4150-4159. [PMID: 38197866 PMCID: PMC10811619 DOI: 10.1021/acsami.3c15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Solution processable metallic nanomaterials present a convenient way to fabricate conductive structures, which are necessary in all electronic devices. However, they tend to require post-treatments to remove the bulky ligands around them to achieve high conductivity. In this work, we present a method to formulate a post-treatment free conductive silver nanowire ink by controlling the type of ligands around the silver nanowires. We found that bidentate ligands with a rigid molecular structure were effective in improving the conductivity of the silver nanowire networks as they could maximize the number of linkages between neighboring nanowires. In addition, DFT calculations also revealed that ligands with good LUMO to silver energy alignment were more effective. Because of these reasons, fumaric acid was found to be the most effective ligand and achieved a large reduction in sheet resistance of 70% or higher depending on the nanowire network density. The concepts elucidated from this study would also be applicable to other solution processable nanomaterials systems such as quantum dots for photovoltaics or LEDs which also require good charge transport being neighboring nanoparticles.
Collapse
Affiliation(s)
- Wing Chung Liu
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Joseph C. A. Prentice
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Christopher E. Patrick
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Andrew A. R. Watt
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| |
Collapse
|
8
|
Moon CJ, Park JW, Jang YR, Kim HS. Intense pulsed light annealing of solution-based indium-gallium-zinc-oxide semiconductors with printed Ag source and drain electrodes for bottom gate thin film transistors. Sci Rep 2024; 14:1566. [PMID: 38238447 PMCID: PMC10796356 DOI: 10.1038/s41598-024-52096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
In this study, an intense pulsed light (IPL) annealing process for a printed multi-layered indium-gallium-zinc-oxide (IGZO) and silver (Ag) electrode structure was developed for a high performance all-printed inorganic thin film transistor (TFT). Through a solution process using IGZO precursor and Ag ink, the bottom gate structure TFT was fabricated. The spin coating method was used to form the IGZO semiconductor layer on a heavily-doped silicon wafer covered with thermally grown silicon dioxide. The annealing process of the IGZO layer utilized an optimized IPL irradiation process. The Ag inks were printed on the IGZO layer by screen printing to form the source and drain (S/D) pattern. This S/D pattern was dried by near infrared radiation (NIR) and the dried S/D pattern was sintered with intense pulsed light by varying the irradiation energy. The performances of the all-printed TFT such as the field effect mobility and on-off ratio electrical transfer properties were measured by a parameter analyzer. The interfacial analysis including the contact resistance and cross-sectional microstructure analysis is essential because diffusion phenomenon can occur during the annealing and sintering process. Consequently, this TFT device showed noteworthy performance (field effect mobility: 7.96 cm2/V s, on/off ratio: 107). This is similar performance compared to a conventional TFT, which is expected to open a new path in the printed metal oxide-based TFT field.
Collapse
Affiliation(s)
- Chang-Jin Moon
- Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Jong-Whi Park
- Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yong-Rae Jang
- Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Hak-Sung Kim
- Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
9
|
Liu Q, Liang J, Tian B, Xue E, Zhang X, Guo P, Zheng K, Tang G, Wu W. A Continuous Gradient Chemical Reduction Strategy of Graphene Oxide for Highly Efficient Evaporation-Driven Electricity Generation. SMALL METHODS 2023; 7:e2300304. [PMID: 37147782 DOI: 10.1002/smtd.202300304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Spontaneously harvesting electricity through a water evaporation process is renewable and environmentally friendly, and provides a promising way for self-powered electronics. However, most of evaporation-driven generators are suffering from a limited power supply for practical use. Herein, a high-performance textile-based evaporation-driven electricity generator based on continuous gradient chemical reduced graphene oxide (CG-rGO@TEEG) is obtained by a continuous gradient chemical reduction strategy. The continuous gradient structure not only greatly enhances the ion concentration difference between the positive and negative electrodes but also significantly optimizes the electrical conductivity of the generator. As a result, the as-prepared CG-rGO@TEEG can generate a voltage of 0.44 V and a considerable current of 590.1 µA with an optimized power density of 0.55 mW cm-3 when 50 µL of NaCl solution is applied. Such scale-up CG-rGO@TEEGs can supply sufficient power to directly drive a commercial clock for more than 2 h in ambient conditions. This work offers a novel approach for efficient clean energy harvesting based on water evaporation.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Enbo Xue
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Panwang Guo
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Guilin Tang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Wang R, Zhang Y, Xi W, Zhang J, Gong Y, He B, Wang H, Jin J. 3D printing of hierarchically micro/nanostructured electrodes for high-performance rechargeable batteries. NANOSCALE 2023; 15:13932-13951. [PMID: 37581599 DOI: 10.1039/d3nr03098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
3D printing, also known as additive manufacturing, is capable of fabricating 3D hierarchical micro/nanostructures by depositing a layer-upon-layer of precursor materials and solvent-based inks under the assistance of computer-aided design (CAD) files. 3D printing has been employed to construct 3D hierarchically micro/nanostructured electrodes for rechargeable batteries, endowing them with high specific surface areas, short ion transport lengths, and high mass loading. This review summarizes the advantages and limitations of various 3D printing methods and presents the recent developments of 3D-printed electrodes in rechargeable batteries, such as lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. Furthermore, the challenges and perspectives of the 3D printing technique for electrodes and rechargeable batteries are put forward. This review will provide new insight into the 3D printing of hierarchically micro/nanostructured electrodes in rechargeable batteries and promote the development of 3D printed electrodes and batteries in the future.
Collapse
Affiliation(s)
- Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Youfang Zhang
- Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Wen Xi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Junpu Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China
| |
Collapse
|
11
|
Reis Carneiro M, de Almeida AT, Tavakoli M, Majidi C. Recyclable Thin-Film Soft Electronics for Smart Packaging and E-Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301673. [PMID: 37436091 PMCID: PMC10502858 DOI: 10.1002/advs.202301673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Despite advances in soft, sticker-like electronics, few efforts have dealt with the challenge of electronic waste. Here, this is addressed by introducing an eco-friendly conductive ink for thin-film circuitry composed of silver flakes and a water-based polyurethane dispersion. This ink uniquely combines high electrical conductivity (1.6 × 105 S m-1 ), high resolution digital printability, robust adhesion for microchip integration, mechanical resilience, and recyclability. Recycling is achieved with an ecologically-friendly processing method to decompose the circuits into constituent elements and recover the conductive ink with a decrease of only 2.4% in conductivity. Moreover, adding liquid metal enables stretchability of up to 200% strain, although this introduces the need for more complex recycling steps. Finally, on-skin electrophysiological monitoring biostickers along with a recyclable smart package with integrated sensors for monitoring safe storage of perishable foods are demonstrated.
Collapse
Affiliation(s)
- Manuel Reis Carneiro
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Aníbal T. de Almeida
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Carmel Majidi
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
12
|
Al-Amri AM. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications. Polymers (Basel) 2023; 15:3234. [PMID: 37571128 PMCID: PMC10422352 DOI: 10.3390/polym15153234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Printing electronics incorporates several significant technologies, such as semiconductor devices produced by various printing techniques on flexible substrates. With the growing interest in printed electronic devices, new technologies have been developed to make novel devices with inexpensive and large-area printing techniques. This review article focuses on the most recent developments in printed photonic devices. Photonics and optoelectronic systems may now be built utilizing materials with specific optical properties and 3D designs achieved through additive printing. Optical and architected materials that can be printed in their entirety are among the most promising future research topics, as are platforms for multi-material processing and printing technologies that can print enormous volumes at a high resolution while also maintaining a high throughput. Significant advances in innovative printable materials create new opportunities for functional devices to act efficiently, such as wearable sensors, integrated optoelectronics, and consumer electronics. This article provides an overview of printable materials, printing methods, and the uses of printed electronic devices.
Collapse
Affiliation(s)
- Amal M Al-Amri
- Physics Department, Collage of Science & Arts, King Abdulaziz University, Rabigh 25724, Saudi Arabia
| |
Collapse
|
13
|
Borymski S, Markowicz A, Nowak A, Matus K, Dulski M, Sułowicz S. Copper-oxide nanoparticles exert persistent changes in the structural and functional microbial diversity: A 60-day mesocosm study of zinc-oxide and copper-oxide nanoparticles in the soil-microorganism-nanoparticle system. Microbiol Res 2023; 274:127395. [PMID: 37327605 DOI: 10.1016/j.micres.2023.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in nanotechnology and development of nanoformulation methods, has enabled the emergence of precision farming - a novel farming method that involves nanopesticides and nanoferilizers. Zinc-oxide nanoparticles serve as a Zn source for plants, but they are also used as nanocarriers for other agents, whereas copper-oxide nanoparticles possess antifungal activity, but in some cases may also serve as a micronutrient providing Cu ions. Excessive application of metal-containing agents leads to their accumulation in soil, where they pose a threat to non-target soil organisms. In this study, soils obtained from the environment were amended with commercial zinc-oxide nanoparticles: Zn-OxNPs(10-30), and newly-synthesized copper-oxide nanoparticles: Cu-OxNPs(1-10). Nanoparticles (NPs) in 100 and 1000 mg kg-1 concentrations were added in separate set-ups, representing a soil-microorganism-nanoparticle system in a 60-day laboratory mesocosm experiment. To track environmental footprint of NPs on soil microorganisms, a Phospholipd Fatty Acid biomarker analysis was employed to study microbial community structure, whereas Community-Level Physiological Profiles of bacterial and fungal fractions were measured with Biolog Eco and FF microplates, respectively. The results revealed a prominent and persistent effects exerted by copper-containing nanoparticles on non-target microbial communities. A severe loss of Gram-positive bacteria was observed in conjunction with disturbances in bacterial and fungal CLPPs. These effects persisted till the end of a 60-day experiment, demonstrating detrimental rearrangements in microbial community structure and functions. The effects imposed by zinc-oxide NPs were less pronounced. As persistent changes were observed for newly synthesized Cu-containing NPs, this work stresses the need for obligatory testing of nanoparticle interactions with non-target microbial communities in long-term experiments, especially during the approval procedures of novel nano-substances. It also underlines the role of in-depth physical and chemical studies of NP-containing agents, which may be tweaked to mitigate the unwanted behavior of such substances in the environment and preselect their beneficial characteristics.
Collapse
Affiliation(s)
- Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Nowak
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland.
| | - Mateusz Dulski
- University of Silesia, Faculty of Science and Technology, Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
14
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
15
|
Chavan GT, Kim Y, Khokhar MQ, Hussain SQ, Cho EC, Yi J, Ahmad Z, Rosaiah P, Jeon CW. A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1226. [PMID: 37049320 PMCID: PMC10096935 DOI: 10.3390/nano13071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Global-warming-induced climate changes and socioeconomic issues increasingly stimulate reviews of renewable energy. Among energy-generation devices, solar cells are often considered as renewable sources of energy. Lately, transparent conducting oxides (TCOs) are playing a significant role as back/front contact electrodes in silicon heterojunction solar cells (SHJ SCs). In particular, the optimized Sn-doped In2O3 (ITO) has served as a capable TCO material to improve the efficiency of SHJ SCs, due to excellent physicochemical properties such as high transmittance, electrical conductivity, mobility, bandgap, and a low refractive index. The doped-ITO thin films had promising characteristics and helped in promoting the efficiency of SHJ SCs. Further, SHJ technology, together with an interdigitated back contact structure, achieved an outstanding efficiency of 26.7%. The present article discusses the deposition of TCO films by various techniques, parameters affecting TCO properties, characteristics of doped and undoped TCO materials, and their influence on SHJ SC efficiency, based on a review of ongoing research and development activities.
Collapse
Affiliation(s)
- Ganesh T. Chavan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Youngkuk Kim
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Muhammad Quddamah Khokhar
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Shahzada Qamar Hussain
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Eun-Chel Cho
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Junsin Yi
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Zubair Ahmad
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Chan-Wook Jeon
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
16
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
17
|
Zheng W, Saiz F, Shen Y, Zhu K, Liu Y, McAleese C, Conran B, Wang X, Lanza M. Defect-Free Metal Deposition on 2D Materials via Inkjet Printing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104138. [PMID: 34734445 DOI: 10.1002/adma.202104138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
2D materials have many outstanding properties that make them attractive for the fabrication of electronic devices, such as high conductivity, flexibility, and transparency. However, integrating 2D materials in commercial devices and circuits is challenging because their structure and properties can be damaged during the fabrication process. Recent studies have demonstrated that standard metal deposition techniques (like electron beam evaporation and sputtering) significantly damage the atomic structure of 2D materials. Here it is shown that the deposition of metal via inkjet printing technology does not produce any observable damage in the atomic structure of ultrathin 2D materials, and it can keep a sharp interface. These conclusions are supported by abundant data obtained via atomistic simulations, transmission electron microscopy, nanochemical metrology, and device characterization in a probe station. The results are important for the understanding of inkjet printing technology applied to 2D materials, and they could contribute to the better design and optimization of electronic devices and circuits.
Collapse
Affiliation(s)
- Wenwen Zheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Fernan Saiz
- Institute of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yaqing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Kaichen Zhu
- MIND, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Martí i Franquès 1, Barcelona, E-08028, Spain
| | - Yingwen Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Clifford McAleese
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Ben Conran
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Xiaochen Wang
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Mario Lanza
- Institute of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Pavithra CLP, Dey SR. Advances on multi‐dimensional high‐entropy alloy nanoarchitectures: Unconventional strategies and prospects. NANO SELECT 2022. [DOI: 10.1002/nano.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chokkakula L. P. Pavithra
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Suhash Ranjan Dey
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
20
|
Secor EB, Bell NS, Romero MP, Tafoya RR, Nguyen TH, Boyle TJ. Titanium hydride nanoparticles and nanoinks for aerosol jet printed electronics. NANOSCALE 2022; 14:12651-12657. [PMID: 35983782 DOI: 10.1039/d2nr03571e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive inks commonly rely on oxidation-resistant metallic nanoparticles such as gold, silver, copper, and nickel. The criterion of air stability limits the scope of material properties attainable in printed electronic devices. Here we present an alternative approach based on air-stable nanoscale metal hydrides. Conductive patterns based on titanium hydride (TiH2) nanoinks were successfully printed on polyimide under ambient atmosphere and cured using intense pulsed light processing. Nanoparticles of TiH2 were generated by heating TiH2 powder in octylamine followed by wet ball milling, yielding <100 nm platelets. The addition of a suitable polymer dispersant during ball milling yielded stable colloidal dispersions suitable for liquid-phase processing. Aerosol jet printing of the resultant TiH2 nanoinks was demonstrated on glass and polyimide substrates, with a resolution as fine as 20 μm. Following intense pulsed light curing, samples on polyimide were found to exhibit a sintered, porous morphology with an electrical sheet resistance of ∼150 Ω □-1.
Collapse
Affiliation(s)
- Ethan B Secor
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
- Iowa State University, Department of Mechanical Engineering, 2529 Union Drive, Ames, IA 50011, USA.
| | - Nelson S Bell
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
| | - Monica Presiliana Romero
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
| | - Rebecca R Tafoya
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
| | - Thao H Nguyen
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
| | - Timothy J Boyle
- Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard, SE, Albuquerque, NM 87106, USA.
| |
Collapse
|
21
|
van Hazendonk L, Pinto AM, Arapov K, Pillai N, Beurskens MRC, Teunissen JP, Sneck A, Smolander M, Rentrop CHA, Bouten PCP, Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8031-8042. [PMID: 36117880 PMCID: PMC9477090 DOI: 10.1021/acs.chemmater.2c02007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- LEPABE, Faculdade
de Engenharia, Universidade do Porto, 4200-180 Porto, Portugal
| | - Kirill Arapov
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Nikhil Pillai
- Pulseforge, 400 Parker Drive, Suite 1110, Austin, Texas 78728, United States
| | - Michiel R. C. Beurskens
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Asko Sneck
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Maria Smolander
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Piet C. P. Bouten
- Holst
Centre - TNO, High Tech
Campus 31, 5656AE Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Komsthöft T, Bovone G, Bernhard S, Tibbitt MW. Polymer functionalization of inorganic nanoparticles for biomedical applications. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Electrochemical and physicochemical degradability evaluation of printed flexible carbon electrodes in seawater. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Kralj M, Krivačić S, Ivanišević I, Zubak M, Supina A, Marciuš M, Halasz I, Kassal P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172936. [PMID: 36079974 PMCID: PMC9457697 DOI: 10.3390/nano12172936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/27/2023]
Abstract
With the growing number of flexible electronics applications, environmentally benign ways of mass-producing graphene electronics are sought. In this study, we present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional material in the formulation of an inkjet-printable conductive ink, based on green solvents: water, ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size; in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print processing were evaluated as a means of reducing the electrical resistance of the printed features. Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers) were obtained on polyimide sheets, after thermal annealing for 1 h at 400 °C and a subsequent single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting of a battery-powered LED was realized. The demonstrated approach presents an environmentally friendly alternative to mass-producing graphene-based printed flexible electronics.
Collapse
Affiliation(s)
- Magdalena Kralj
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonio Supina
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia
| | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Halasz
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Choi MJ, Hwang YJ, Pyun SB, Kim JH, Kim JY, Hong W, Park JY, Kwak J, Cho EC. Reaction-Based Scalable Inorganic Patterning on Rigid and Soft Substrates for Photovoltaic Roofs with Minimal Optical Loss and Sustainable Sunlight-Driven-Cleaning Windows. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38339-38350. [PMID: 35968862 DOI: 10.1021/acsami.2c09145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently developed fabrication methods for inorganic patterns (such as laser printing and optical lithography) can avoid some patterning processes conducted by conventional etching and lithography (such as substrate etching and modulation) and are thereby useful for applications in which the substrates and materials must not be damaged during patterning. Simultaneously, it is also necessary to develop facile and economical methods producing inorganic patterns on various substrates without requiring a special apparatus while attaining the above-mentioned advantages. The present study proposes a reaction-based method for fabricating inorganic patterns by immersing substrates coated with a colloidal nanosheet into an aqueous solution containing inorganic precursors. Silica and TiO2 patterns spontaneously developed during the conversion of each inorganic precursor. These patterns were successful on rigid and flexible substrates. We fabricated these patterns on a wafer-sized silicon and large flexible poly(ethylene terephthalate) film, suggesting the scalability. We fabricated a biomimetic pattern on both sides of a glass window, as a photovoltaic roof, for minimal optical losses to maximally present photovoltaic effects of a solar cell. The TiO2 pattern on glass window exhibits sustainable sunlight-driven-cleaning activity for contaminants. The method could provide a platform for economical high-performance inorganic patterns for energy, environmental, electronics, and other areas.
Collapse
Affiliation(s)
- Min Ju Choi
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Ji Hwang
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Beom Pyun
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong Han Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Yeon Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Woongpyo Hong
- Materials Research and Engineering Center, Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Republic of Korea
| | - Jung-Yeon Park
- Materials Research and Engineering Center, Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Republic of Korea
| | - Jinwoo Kwak
- Materials Research and Engineering Center, Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Republic of Korea
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
26
|
Inkjet-printable and low-temperature curable Ag–Ag2O mixed-phase conductive nanoink for flexible electronic applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink. Polymers (Basel) 2022; 14:polym14163411. [PMID: 36015668 PMCID: PMC9412835 DOI: 10.3390/polym14163411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 μm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties. In this work, we explore AJP for the 3D printing of free-standing pillar arrays. We utilize aryl epoxy photopolymer as ink coupled with a cross-linking “on the fly” technique. Pillar structures 550 μm in height and with a diameter of 50 μm were 3D printed. Pillar structures were characterized via scanning electron microscopy, where the morphology, number of printed layers and side effects of the AJP technique were investigated. Satellite droplets and over-spray seem to be unavoidable for structures smaller than 70 μm. Nevertheless, reactive ion etching (RIE) as a post-processing step can mitigate AJP side effects. AJP-RIE together with photopolymer-based ink can be promising for the 3D printing of microstructures, offering fast and maskless manufacturing without wet chemistry development and heat treatment post-processing.
Collapse
|
28
|
Conductive coatings based on concentrated silver organosols stabilized with Tergitol NP4/Aerosol OT mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Gravure Printing for PVDF Thin-Film Pyroelectric Device Manufacture. COATINGS 2022. [DOI: 10.3390/coatings12071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyroelectric energy harvesting is one of the more recent and promising solid-state approaches for directly converting time-dependent temperature fluctuations into electric energy. Conventional printing technologies can offer many advantages for the production of pyroelectric thin-film-based devices, such as low cost, low temperature, the use of flexible substrates and shaping at the same time as deposition. Nevertheless, some issues related to low printed thickness and film-forming microstructure control need to be addressed. In this exploratory study, the possibility of exploiting the highly attractive gravure printing process for the potential industrial manufacture of flexible polyvinylidene fluoride (PVDF) thin-film pyroelectric devices was investigated. By the use of corona pre-treatment of the printing substrate and low-temperature polar solvent evaporation, multilayer gravure-printed PVDF pyroelectric devices were successfully manufactured for the first time, achieving a maximum generated current of 0.1 nA at 2.5 K/s from a device with an active area of 1 cm2. Considering the very low thermal inertia and performance scaling by the area expected for pyroelectric thin-film-based devices, combined with the upscaling potential of roll-to-roll gravure printing, our results provide new opportunities for on-demand, low-cost pyroelectric device manufacture and their integration in hybrid harvesters.
Collapse
|
30
|
Veerapandian S, Kim W, Kim J, Jo Y, Jung S, Jeong U. Printable inks and deformable electronic array devices. NANOSCALE HORIZONS 2022; 7:663-681. [PMID: 35660837 DOI: 10.1039/d2nh00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deformable printed electronic array devices are expected to revolutionize next-generation electronics. However, although remarkable technological advances in printable inks and deformable electronic array devices have recently been achieved, technical challenges remain to commercialize these technologies. In this review article a brief introduction to printing methods highlighting significant research studies on ink formation for conductors, semiconductors, and insulators is provided, and the structural design and successful printing strategies of deformable electronic array devices are described. Successful device demonstrations are presented in the applications of passive- and active-matrix array devices. Finally, perspectives and technological challenges to be achieved are pointed out to print practically available deformable devices.
Collapse
Affiliation(s)
- Selvaraj Veerapandian
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Woojo Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Youngmin Jo
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
31
|
Abstract
Perovskite solar cells (PSCs) are a promising and fast-growing type of photovoltaic cell due to their low cost and high conversion efficiency. The high efficiency of PSCs is closely related to the quality of the photosensitive layer, and the high-quality light absorbing layer depends on the growth condition of the crystals. In the formation of high-quality crystals, annealing is an indispensable and crucial part, which serves to evaporate the solvent and drive the crystallization of the film. Various annealing methods have different effects on the promotion of the film growth process owing to the way they work. Here, this review will present a discussion of the growth puzzles and quality of perovskite crystals under different driving forces, and then explain the relationship between the annealing driving force and crystal growth. We divided the main current annealing methods into physical and chemical annealing, which has never been summarized before. The main annealing methods currently reported for crystal growth are summarized to visualize the impact of annealing design strategies on photovoltaic performance, while the growth mechanisms of thin films under multiple annealing methods are also discussed. Finally, we suggest future perspectives and trends in the industrial fabrication of PSCs in the future. The review promises industrial manufacturing of annealed PSCs. The review is expected to facilitate the industrial fabrication of PSCs.
Collapse
|
32
|
Sharma A, Zhu Y, Spangler EJ, Laradji M. Modes of adhesion of spherocylindrical nanoparticles to tensionless lipid bilayers. J Chem Phys 2022; 156:234901. [PMID: 35732528 DOI: 10.1063/5.0094234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adhesion modes and endocytosis pathway of spherocylindrical nanoparticles (NPs) are investigated numerically using molecular dynamics simulations of a coarse-grained implicit-solvent model. The investigation is performed systematically with respect to the adhesion energy density ξ, NP's diameter D, and NP's aspect ratio α. At weak ξ, the NP adheres to the membrane through a parallel mode, i.e., its principal axis is parallel to the membrane. However, for relatively large ξ, the NP adheres through a perpendicular mode, i.e., the NP is invaginated, such as its principal axis is nearly perpendicular to the membrane. The value of ξ at the transition from the parallel to the perpendicular mode decreases with increasing the D or α, in agreement with theoretical arguments based on the Helfrich Hamiltonian. As ξ is further increased, the NP undergoes endocytosis, with the value of ξ at the endocytosis threshold that is independent of the aspect ratio but decreases with increasing D. The kinetics of endocytosis depends strongly on ξ and D. While for low values of D, the NP first rotates to a parallel orientation then to a perpendicular orientation. At high values of ξ or D, the NP is endocytosed while in the parallel orientation.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
33
|
Chekusova VP, Trul AA, Agina EV, Ponomarenko SA. A universal approach to a structured polymer substrate for manufacturing a printed polymer gas sensor based on a field effect transistor. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Baraghani S, Barani Z, Ghafouri Y, Mohammadzadeh A, Salguero TT, Kargar F, Balandin AA. Charge-Density-Wave Thin-Film Devices Printed with Chemically Exfoliated 1T-TaS 2 Ink. ACS NANO 2022; 16:6325-6333. [PMID: 35324143 DOI: 10.1021/acsnano.2c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on the preparation of inks containing fillers derived from quasi-two-dimensional charge-density-wave materials, their application for inkjet printing, and the evaluation of their electronic properties in printed thin-film form. The inks were prepared by liquid-phase exfoliation of CVT-grown 1T-TaS2 crystals to produce fillers with nm-scale thickness and μm-scale lateral dimensions. Exfoliated 1T-TaS2 was dispersed in a mixture of isopropyl alcohol and ethylene glycol to allow fine-tuning of filler particles thermophysical properties for inkjet printing. The temperature-dependent electrical and current fluctuation measurements of printed thin films demonstrated that the charge-density-wave properties of 1T-TaS2 are preserved after processing. The functionality of the printed thin-film devices can be defined by the nearly commensurate to the commensurate charge-density-wave phase transition of individual exfoliated 1T-TaS2 filler particles rather than by electron-hopping transport between them. The obtained results are important for the development of printed electronics with diverse functionality achieved by the incorporation of quasi-two-dimensional van der Waals quantum materials.
Collapse
Affiliation(s)
- Saba Baraghani
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zahra Barani
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Yassamin Ghafouri
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Amirmahdi Mohammadzadeh
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Tina T Salguero
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Fariborz Kargar
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Alexander A Balandin
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
35
|
Haque RI, Waafi AK, Jaemin K, Briand D, Han A. 80 K cryogenic stage for ice lithography. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2021.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Nakajima T, Fujio Y, Sugahara T, Tsuchiya T. Flexible Ceramic Film Sensors for Free-Form Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:1996. [PMID: 35271141 PMCID: PMC8914772 DOI: 10.3390/s22051996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Recent technological innovations, such as material printing techniques and surface functionalization, have significantly accelerated the development of new free-form sensors for next-generation flexible, wearable, and three-dimensional electronic devices. Ceramic film sensors, in particular, are in high demand for the production of reliable flexible devices. Various ceramic films can now be formed on plastic substrates through the development of low temperature fabrication processes for ceramic films, such as photocrystallization and transferring methods. Among flexible sensors, strain sensors for precise motion detection and photodetectors for biomonitoring have seen the most research development, but other fundamental sensors for temperature and humidity have also begun to grow. Recently, flexible gas and electrochemical sensors have attracted a lot of attention from a new real-time monitoring application that uses human breath and perspiration to accurately diagnose presymptomatic states. The development of a low-temperature fabrication process of ceramic film sensors and related components will complete the chemically stable and reliable free-form sensing devices by satisfying the demands that can only be addressed by flexible metal and organic components.
Collapse
Affiliation(s)
- Tomohiko Nakajima
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan;
| | - Yuki Fujio
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Saga 841-0052, Japan;
| | - Tohru Sugahara
- Department of Energy and Environmental Materials, SANKEN, Osaka University, Osaka 567-0047, Japan;
| | - Tetsuo Tsuchiya
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan;
| |
Collapse
|
37
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Li W, Li L, Li F, Kawakami K, Sun Q, Nakayama T, Liu X, Kanehara M, Zhang J, Minari T. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8146-8156. [PMID: 35104116 DOI: 10.1021/acsami.1c21633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cost-effective copper conductive inks are considered as the most promising alternative to expensive silver conductive inks for use in printed electronics. However, the low stability and high sintering temperature of copper inks hinder their practical application. Herein, we develop rapidly customizable and stable copper-nickel complex inks that can be transformed in situ into uniform copper@nickel core-shell nanostructures by a self-organized process during low-temperature annealing and immediately sintered under photon irradiation to form copper-nickel alloy patterns on flexible substrates. The complex inks are synthesized within 15 min via a simple mixing process and are particle-free, air-stable, and compatible with large-area screen printing. The manufactured patterns exhibit a high conductivity of 19-67 μΩ·cm, with the value depending on the nickel content, and can maintain high oxidation resistance at 180 °C even when the nickel content is as low as 6 wt %. In addition, the printed copper-nickel alloy patterns exhibit high flexibility as a consequence of the local softening and mechanical anchoring effect between the metal pattern and the flexible substrate, showing strong potential in the additive manufacturing of highly reliable flexible electronics, such as flexible radio-frequency identification (RFID) tags and various wearable sensors.
Collapse
Affiliation(s)
- Wanli Li
- Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 3050044, Japan
| | - Lingying Li
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan
| | - Fei Li
- Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kohsaku Kawakami
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tomonobu Nakayama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | | | - Jie Zhang
- Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Takeo Minari
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 3050044, Japan
| |
Collapse
|
39
|
Dong J, Svoronos SA, Lau JC, Moudgil B. Effects of fluid film properties on fouling in biphasic flow systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F, Huang W. Frontiers and Structural Engineering for Building Flexible Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103954. [PMID: 34939351 PMCID: PMC8867139 DOI: 10.1002/advs.202103954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Indexed: 05/04/2023]
Abstract
With the development of flexible devices, the demand for wearable power sources has increased and gradually become imperative. Zinc-air batteries (ZABs) have attracted lots of research interest due to their high theoretical energy density and excellent safety properties, which can meet the wearable energy supply requirements. Here, the flexibility of energy storage devices is discussed first, followed by the chemistries and development of flexible ZABs. The design of flexible electrodes, the properties of solid-state electrolytes (SSEs), and the construction of deformable structures are discussed in depth. The researchers working on flexible energy storage devices will benefit from the work.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Ningxiang Wu
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Yanhua Zhao
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Xinglong Zhang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Jiansheng Wu
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Jiena Weng
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Sheng Li
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Fengwei Huo
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Wei Huang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
41
|
Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. METALS 2022. [DOI: 10.3390/met12020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, silver nanoparticles have attracted large interest in the photonics, electrics, analytical, and antimicrobial/biocidal fields due to their excellent optical, electrical, biological, and antibacterial properties. The versatility in generating different sizes, shapes, and surface morphologies results in a wide range of applications of silver nanoparticles in various industrial and health-related areas. In industrial applications, silver nanoparticles are used to produce conductive inks, which allows the construction of electronic devices on low-cost and flexible substrates by using various printing techniques. In order to achieve successful printed patterns, the necessary formulation and synthesis need to be engineered to fulfil the printing technique requirements. Additional sintering processes are typically further required to remove the added polymers, which are used to produce the desired adherence, viscosity, and reliable performance. This contribution presents a review of the synthesis of silver nanoparticles via different methods (chemical, physical and biological methods) and the application of silver nanoparticles under the electrical field. Formulation of silver inks and formation of conductive patterns by using different printing techniques (inkjet printing, screen printing and aerosol jet printing) are presented. Post-printing treatments are also discussed. A summary concerning outlooks and perspectives is presented at the end of this review.
Collapse
|
42
|
Guo R, Li H, Wang H, Zhao X, Yu H, Ye Q. Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56597-56606. [PMID: 34784187 DOI: 10.1021/acsami.1c18065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Paper and textile are two ideal carriers in wearable and printed electronics because of their flexibility and low price. However, the porous and fibrous structures restrain their use in printed electronics because the capillary effect results in ink diffusion. Especially, conventional metal ink needs to be post-treated at high temperatures (>150 °C), which is not compatible with paper and textile. To address problems involved in ink diffusion and avoid high-temperature treatment, herein, a new strategy is proposed: screen-printing of high-viscosity catalytic inks combined with electroless deposition of metal layers on paper and textile substrates. The ink consists of Ag nanoparticles, a polydimethylsiloxane (PDMS) prepolymer, and a curing agent. PDMS as a viscoelastic matrix of catalysts plays key roles in limiting ink diffusion, enhancing interfacial adhesion between the substrate and metal layer, keeping metal flexible. As a demonstration, metal Cu and Ni are printed, respectively. The printed precision (diffusion < 1% on filter paper) can be controlled by adjusting the Ag content in the PDMS matrix; interfacial adhesion can be enhanced by ink coating on substrate microfibers and metal embedding into the PDMS matrix. In addition, Cu on paper shows extremely low sheet resistance (0.29 mΩ/□), and Cu on nylon shows outstanding foldability with a resistance of less than five times of initial resistance during 5000 folding cycles.
Collapse
Affiliation(s)
- Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haodong Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Haoran Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Xiangyuan Zhao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| |
Collapse
|
43
|
|
44
|
Zhang H, Moon SK. Reviews on Machine Learning Approaches for Process Optimization in Noncontact Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53323-53345. [PMID: 34042439 DOI: 10.1021/acsami.1c04544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, machine learning has gained considerable attention in noncontact direct ink writing because of its novel process modeling and optimization techniques. Unlike conventional fabrication approaches, noncontact direct ink writing is an emerging 3D printing technology for directly fabricating low-cost and customized device applications. Despite possessing many advantages, the achieved electrical performance of produced microelectronics is still limited by the printing quality of the noncontact ink writing process. Therefore, there has been increasing interest in the machine learning for process optimization in the noncontact direct ink writing. Compared with traditional approaches, despite machine learning-based strategies having great potential for efficient process optimization, they are still limited to optimize a specific aspect of the printing process in the noncontact direct ink writing. Therefore, a systematic process optimization approach that integrates the advantages of state-of-the-art machine learning techniques is in demand to fully optimize the overall printing quality. In this paper, we systematically discuss the printing principles, key influencing factors, and main limitations of the noncontact direct ink writing technologies based on inkjet printing (IJP) and aerosol jet printing (AJP). The requirements for process optimization of the noncontact direct ink writing are classified into four main aspects. Then, traditional methods and the state-of-the-art machine learning-based strategies adopted in IJP and AJP for process optimization are reviewed and compared with pros and cons. Finally, to further develop a systematic machine learning approach for the process optimization, we highlight the major limitations, challenges, and future directions of the current machine learning applications.
Collapse
Affiliation(s)
- Haining Zhang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Seung Ki Moon
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
45
|
Kim M, Jee H, Lee J. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2840. [PMID: 34835606 PMCID: PMC8621171 DOI: 10.3390/nano11112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
In recent printed electronics technology, a photo-sintering technique using intense pulsed light (IPL) source has attracted attention, instead of conventional a thermal sintering process with long time and high temperature. The key principle of the photo-sintering process is the selective heating of a thin film with large light absorption coefficients, while a transparent substrate does not heat by the IPL source. Most research on photo-sintering has used a xenon flash lamp as a light source. However, the xenon flash lamp requires instantaneous high power and is unsuitable for large area applications. In this work, we developed a new photo-sintering system using a high-power ultraviolet light emitting diode (UV-LED) module. A LED light source has many merits such as low power consumption and potential large-scale application. The silver nanoparticles ink was inkjet-printed on a polyethylene terephthalate (PET) and photo-sintered by the UV-LED module with the wavelength of 365 and 385 nm. The electrical resistivity as low as 5.44 × 10-6 Ω·cm (just about three times compared to value of bulk silver) was achieved at optimized photo-sintering conditions (wavelength of 365 nm and light intensity of 300 mW/cm2).
Collapse
Affiliation(s)
| | | | - Jaehyeong Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.K.); (H.J.)
| |
Collapse
|
46
|
Baraghani S, Abourahma J, Barani Z, Mohammadzadeh A, Sudhindra S, Lipatov A, Sinitskii A, Kargar F, Balandin AA. Printed Electronic Devices with Inks of TiS 3 Quasi-One-Dimensional van der Waals Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47033-47042. [PMID: 34553916 DOI: 10.1021/acsami.1c12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the fabrication and characterization of electronic devices printed with inks of quasi-one-dimensional (1D) van der Waals materials. The quasi-1D van der Waals materials are characterized by 1D motifs in their crystal structure, which allow for their exfoliation into bundles of atomic chains. The ink was prepared by the liquid-phase exfoliation of crystals of TiS3 into quasi-1D nanoribbons dispersed in a mixture of ethanol and ethylene glycol. The temperature-dependent electrical measurements indicate that the electron transport in the printed devices is dominated by the electron hopping mechanisms. The low-frequency electronic noise in the printed devices is of 1/fγ-type with γ ∼ 1 near-room temperature (f is the frequency). The abrupt changes in the temperature dependence of the noise spectral density and γ parameter can be indicative of the phase transition in individual TiS3 nanoribbons as well as modifications in the hopping transport regime. The obtained results attest to the potential of quasi-1D van der Waals materials for applications in printed electronics.
Collapse
Affiliation(s)
- Saba Baraghani
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jehad Abourahma
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Zahra Barani
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Amirmahdi Mohammadzadeh
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Sriharsha Sudhindra
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Alexey Lipatov
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Fariborz Kargar
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Alexander A Balandin
- Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
47
|
Machiels J, Appeltans R, Bauer DK, Segers E, Henckens Z, Van Rompaey W, Adons D, Peeters R, Geiβler M, Kuehnoel K, Tempel L, Weissbach T, Hübler AC, Verma A, Ferraris E, Deferme W, Buntinx M. Screen Printed Antennas on Fiber-Based Substrates for Sustainable HF RFID Assisted E-Fulfilment Smart Packaging. MATERIALS 2021; 14:ma14195500. [PMID: 34639912 PMCID: PMC8509514 DOI: 10.3390/ma14195500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Intelligent packaging is an emerging technology, aiming to improve the standard communication function of packaging. Radio frequency identification (RFID) assisted smart packaging is of high interest, but the uptake is limited as the market needs cost-efficient and sustainable applications. The integration of screen printed antennas and RFID chips as smart labels in reusable cardboard packaging could offer a solution. Although paper is an interesting and recyclable material, printing on this substrate is challenging as the ink conductivity is highly influenced by the paper properties. In this study, the best paper/functional silver ink combinations were first selected out of 76 paper substrates based on the paper surface roughness, air permeance, sheet resistance and SEM characterization. Next, a flexible high frequency RFID chip (13.56 MHz) was connected on top of screen printed antennas with a conductive adhesive. Functional RFID labels were integrated in cardboard packaging and its potential application as reusable smart box for third party logistics was tested. In parallel, a web-based software application mimicking its functional abilities in the logistic cycle was developed. This multidisciplinary approach to developing an easy-scalable screen printed antenna and RFID-assisted smart packaging application is a good example for future implementation of hybrid electronics in sustainable smart packaging.
Collapse
Affiliation(s)
- Jarne Machiels
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | | | - Dieter Klaus Bauer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
| | - Elien Segers
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Zander Henckens
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Wouter Van Rompaey
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Dimitri Adons
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
| | - Marie Geiβler
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Katrin Kuehnoel
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Lydia Tempel
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Thomas Weissbach
- Institute for Print and Media Technology, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany; (T.W.); (A.C.H.)
| | - Arved Carl Hübler
- Institute for Print and Media Technology, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany; (T.W.); (A.C.H.)
| | - Akash Verma
- Manufacturing Processes and Systems, Department of Mechanical Engineering, KU Leuven, J. D. Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium; (A.V.); (E.F.)
| | - Eleonora Ferraris
- Manufacturing Processes and Systems, Department of Mechanical Engineering, KU Leuven, J. D. Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium; (A.V.); (E.F.)
| | - Wim Deferme
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Correspondence: ; Tel.: +32-11-292155
| |
Collapse
|
48
|
Herbert R, Lim H, Park S, Kim J, Yeo W. Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Adv Healthc Mater 2021; 10:e2100158. [PMID: 34019731 DOI: 10.1002/adhm.202100158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Indexed: 12/17/2022]
Abstract
The development of wireless implantable sensors and integrated systems, enabled by advances in flexible and stretchable electronics technologies, is emerging to advance human health monitoring, diagnosis, and treatment. Progress in material and fabrication strategies allows for implantable electronics for unobtrusive monitoring via seamlessly interfacing with tissues and wirelessly communicating. Combining new nanomaterials and customizable printing processes offers unique possibilities for high-performance implantable electronics. Here, this report summarizes the recent progress and advances in nanomaterials and printing technologies to develop wireless implantable sensors and electronics. Advances in materials and printing processes are reviewed with a focus on challenges in implantable applications. Demonstrations of wireless implantable electronics and advantages based on these technologies are discussed. Lastly, existing challenges and future directions of nanomaterials and printing are described.
Collapse
Affiliation(s)
- Robert Herbert
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Hyo‐Ryoung Lim
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sehyun Park
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Jong‐Hoon Kim
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Woon‐Hong Yeo
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering Parker H. Petit Institute for Bioengineering and Biosciences Neural Engineering Center Institute for Materials Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
49
|
Popovetskiy PS, Kolodin AN, Maximovskiy EA, Plyusnin PE, Korolkov IV, Gerasimov EY. Electrophoretic concentration and production of conductive coatings from silver nanoparticles stabilized with non-ionic surfactant Span 80. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Chen Y, Li Y, Liu Y, Chen P, Zhang C, Qi H. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti 3C 2T x MXene Inks for Multifunctional Sensing and EMI Shielding Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36221-36231. [PMID: 34286583 DOI: 10.1021/acsami.1c10583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D transition-metal carbide/nitride (MXene)-based conductive inks have received tremendous attention due to their high electrical conductivity and other fascinating properties. However, the unstability of MXene-based inks, low fabrication yield of MXene flakes, and poor mechanical properties of printed products strongly limit the proper and large-scale printing of MXene patterns. Here, functioning as a dispersant, an intercalation agent, and reinforcement, sulfated holocellulose nanofibrils (HCNFs) with a unique "core-shell" structure are conducive to the fabrication, storage, and subsequent printing of MXene inks. The MXene/HCNF (MH) ink with high yield (97.2%), good stability, and good homogeneity exhibits excellent printing performance (high resolution and good coverage). It could print various products with adjustable thicknesses and electrical conductivity properties on different substrates. The products printed by the MH ink can be applied as multifunctional sensing materials responding to multiple external stimuli, such as stress/strain, blowing, humidity, and temperature. Furthermore, the resulting products also display a high electromagnetic interference (EMI) shielding effectiveness (SE) of 54.3 dB at a shallow thickness of 100 μm and an excellent specific EMI SE of SSE/t of 7159 dB cm2 g-1.
Collapse
Affiliation(s)
- Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Pan Chen
- Department of Materials Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Cunzhi Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|