1
|
Wu Y, Lin H, Li R, Lin S, Wu C, Huang Q, Xu J, Cheng Y, Wang Y. Laser-direct-writing of molecule-like Ag mx+ nanoclusters in transparent tellurite glass for 3D volumetric optical storage. NANOSCALE 2021; 13:19663-19670. [PMID: 34816864 DOI: 10.1039/d1nr05360d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In situ constructing program-designed nanostructures via laser-direct-writing (LDW) has proved to be a reliable strategy for optical storage (OS). Herein, a kind of low-melting Ag+-doped TeO2-ZnO-Na2O (TZN) tellurite glass has been demonstrated as an ideal LDW OS medium. Microstructural and spectroscopic studies reveal the generation of molecule-like Agmx+ nanoclusters featured with a broad emission band in the orange-red region upon laser irradiation. Probing the laser-glass interaction yields evidences of the spatial distribution of Ag species responsive to laser-induced thermoelastic pressure wave oscillation, as well as the heat-driven migration/aggregation of Ag species along the radial direction of the laser spot. Raman analyses disclose the loose network of TZN-glass convenient for Ag+ mobility and the increased network connectivity when Agmx+ nanoclusters are precipitated out. Combined with the XPS result of Ag+ → Ag0 reduction, the possible formation mechanism of Ag nanoclusters stabilized in glass has been proposed. In a proof-of-concept experiment, 3D volumetric OS in the TZN glass has been demonstrated, showing optical data encoding/decoding in the form of characters and image patterns.
Collapse
Affiliation(s)
- Yaman Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Renfu Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Shisheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Chuxin Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Qiugui Huang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Ju Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Yao Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Yuansheng Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
2
|
Tan L, Lin C, Peng M, Yue Y. Tunable broadband near-infrared luminescence in glass realized by defect-engineering. OPTICS EXPRESS 2021; 29:32149-32157. [PMID: 34615292 DOI: 10.1364/oe.430013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tunable broadband near-infrared (NIR)-luminescent materials play a crucial role as light sources and tunable fiber lasers in modern technologies such as high-capacity telecommunication, imaging, and remote sensing. Despite considerable effort in studying the luminescent materials doped with rare-earth or transition metal ions, it is still challenging to achieve tunable broadband emission in photonic materials, especially in glasses, for active-fiber applications. In the present work, such NIR emission is achieved by modifying oxygen-deficient structural defects (i.e., singly ionized oxygen vacancies (VO∙) in tellurium (Te)-doped germanate glass). The local glass chemistry around Te is controlled by engineering singly ionized oxygen vacancies (VO∙) in alkali-alumino-germanate glass. This enables fine-tuning of the configurations and chemical states of Te centers over a wide range of chemical states, from ionic states to neutrally charged clusters and to positively charged clusters, resulting in various intriguing luminescent behaviors (e.g., wavelength-tunable emission, great emission enhancement, bandwidth extension).
Collapse
|
3
|
Machado T, Macedo NG, Assis M, Doñate-Buendia C, Mínguez-Vega G, Teixeira MM, Foggi CC, Vergani CE, Beltrán-Mir H, Andrés J, Cordoncillo E, Longo E. From Complex Inorganic Oxides to Ag-Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS OMEGA 2018; 3:9880-9887. [PMID: 31459116 PMCID: PMC6644639 DOI: 10.1021/acsomega.8b01264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 05/17/2023]
Abstract
Bimetallic nanoalloys with a wide variety of structures and compositions have been fabricated through many diverse techniques. Generally, various steps and chemicals are involved in their fabrication. In this study, the synthesis of Ag-Bi nanoalloys by femtosecond laser irradiation of an inorganic oxide Ag2WO4/NaBiO3 target without any chemicals like reducing agents or solvent is presented. The interaction between these materials and the ultrashort pulse of light allows the migration of Ag and Bi atoms from the crystal lattice to the particles surfaces and then to the plasma plume, where the reduction of the positively charged Ag and Bi species in their respective metallic species takes place. Subsequently, the controlled nucleation and growth of the Ag-Bi alloyed nanoparticles occurs in situ during the irradiation process in air. Although at the bulk level, these elements are highly immiscible, it was experimentally demonstrated that at nanoscale, the Ag-Bi nanoalloy can assume a randomly mixed structure with up to 6 ± 1 atom % of Bi solubilized into the face-centered cubic structure of Ag. Furthermore, the Ag-Bi binary system possesses high antibacterial activity against Staphylococcus aureus (methicillin-resistant and methicilin-susceptible), which is interesting for potential antimicrobial applications, consequently increasing their range of applicability. The present results provide potential insights into the structures formed by the Ag-Bi systems at the nanoscale and reveal a new processing method where complex inorganic oxides can be used as precursors for the controlled synthesis of alloyed bimetallic nanoparticles.
Collapse
Affiliation(s)
- Thales
R. Machado
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Nadia G. Macedo
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Marcelo Assis
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Carlos Doñate-Buendia
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Gladys Mínguez-Vega
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Mayara M. Teixeira
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Camila C. Foggi
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Carlos E. Vergani
- Faculdade
de Odontologia, Universidade Estadual Paulista
(UNESP), Araraquara 14801-385, São Paulo, Brazil
| | - Héctor Beltrán-Mir
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Juan Andrés
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Eloisa Cordoncillo
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Elson Longo
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
- E-mail:
| |
Collapse
|