1
|
Vu TV, Razavi S, Papavassiliou DV. Effect of Janus particles and non-ionic surfactants on the collapse of the oil-water interface under compression. J Colloid Interface Sci 2021; 609:158-169. [PMID: 34894550 DOI: 10.1016/j.jcis.2021.11.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Janus particles (JPs) and surfactants express different behaviors at the oil-water interface under compression. When both are present at the interface, their synergies result in a different collapse mechanism than when present individually depending on the concentration of the JPs and surfactants. EXPERIMENTS Coarse-grained modeling methods were used to probe the synergies between Janus nanoparticles and nonionic surfactants on the stability of an oil-water interface under compression. When both JPs and surfactants were present, the interface was covered at 0-55% area by JPs and contained surfactants at 0-40% of the interfacial surfactant concentration corresponding to the critical micelle concentration (CMC). FINDINGS Compression of the interface with only surfactants resulted in the expulsion of surfactant molecules to the water phase once the interfacial concentration of surfactant molecules reached the CMC value. Compression of a Janus particle-laden interface past the closed-packing point led to a buckled interface, so that the total interfacial area remained constant upon further compression. When both surfactants and JPs were present on the interface, JPs still caused buckling, which helped retain the surfactant molecules on the interface. The interface exhibited a higher level of deformation in presence of surfactants. When the surfactant concentration was high, under compression, the surfactants partitioned into the water phase, but the buckling of the interface persisted.
Collapse
Affiliation(s)
- Tuan V Vu
- School of Chemical, Biological, and Material Engineering, University of Oklahoma, 100 East Boyd St., Norman, OK 73019-1004, USA
| | - Sepideh Razavi
- School of Chemical, Biological, and Material Engineering, University of Oklahoma, 100 East Boyd St., Norman, OK 73019-1004, USA.
| | - Dimitrios V Papavassiliou
- School of Chemical, Biological, and Material Engineering, University of Oklahoma, 100 East Boyd St., Norman, OK 73019-1004, USA.
| |
Collapse
|
2
|
Sicard F, Toro-Mendoza J. Armored Droplets as Soft Nanocarriers for Encapsulation and Release under Flow Conditions. ACS NANO 2021; 15:11406-11416. [PMID: 34264056 PMCID: PMC8397430 DOI: 10.1021/acsnano.1c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 05/05/2023]
Abstract
Technical challenges in precision medicine and environmental remediation create an increasing demand for smart materials that can select and deliver a probe load to targets with high precision. In this context, soft nanomaterials have attracted considerable attention due to their ability to simultaneously adapt their morphology and functionality to complex ambients. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated by external stimuli. Here, we report on the computational design of a distinctive class of soft nanocarriers, built from armored nanodroplets, able to selectively encapsulate or release a probe load under specific flow conditions. First, we describe in detail the mechanisms at play in the formation of pocket-like structures in armored nanodroplets and their stability under external flow. Then we use that knowledge to test the capacity of these pockets to yield flow-assisted encapsulation or expulsion of a probe load. Finally, the rheological properties of these nanocarriers are put into perspective with those of delivery systems employed in pharmaceutical and cosmetic technology.
Collapse
Affiliation(s)
- François Sicard
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, U.K.
- Department
of Chemical Engineering, University College
London, WC1E 7JE London, U.K.
| | - Jhoan Toro-Mendoza
- Centro
de Estudios Interdisciplinarios de la Fisica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020A, Venezuela
| |
Collapse
|
3
|
Khobaib K, Hornowski T, Rozynek Z. Particle-covered droplet and a particle shell under compressive electric stress. Phys Rev E 2021; 103:062605. [PMID: 34271657 DOI: 10.1103/physreve.103.062605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Understanding of the behavior of an individual droplet suspended in a liquid and subjected to a stress is important for studying and designing more complex systems, such as emulsions. Here, we present an experimental study of the behavior of a particle-covered droplet and its particle shell under compressive stress. The stress was induced by an application of a DC electric field. We studied how the particle coverage (φ), particle size (d), and the strength of an electric field (E) influence the magnitude of the droplet deformation (D). The experimental results indicate that adding electrically insulating particles to a droplet interface drastically changes the droplet deformation by increasing its magnitude. We also found that the magnitude of the deformation is not retraceable during the electric field sweeping, i.e., the strain-stress curves form a hysteresis loop due to the energy dissipation. The field-induced droplet deformation was accompanied by structural and morphological changes in the particle shell. We found that shells made of smaller particles were more prone to jamming and formation of arrested shells after removal of an electric stress.
Collapse
Affiliation(s)
- Khobaib Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Tomasz Hornowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Zbigniew Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.,PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
4
|
Khobaib K, Mikkelsen A, Vincent-Dospital T, Rozynek Z. Electric-field-induced deformation, yielding, and crumpling of jammed particle shells formed on non-spherical Pickering droplets. SOFT MATTER 2021; 17:5006-5017. [PMID: 33908579 DOI: 10.1039/d1sm00125f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered with densely packed solid particles, often called Pickering droplets, are used in a variety of fundamental studies and practical applications. For many applications, it is essential to understand the mechanics of such particle-laden droplets subjected to external stresses. Several research groups have studied theoretically and experimentally the deformation, relaxation, rotation, and stability of Pickering droplets. Most of the research concerns spherical Pickering droplets. However, little is known about non-spherical Pickering droplets with arrested particle shells subjected to compressive stress. The experimental results presented here contribute to filling this gap in research. We deform arrested non-spherical Pickering droplets by subjecting them to electric fields, and study the effect of droplet geometry and size, as well as particle size and electric field strength, on the deformation and yielding of arrested non-spherical Pickering droplets. We explain why a more aspherical droplet and/or a droplet covered with a shell made of larger particles required higher electric stress to deform and yield. We also show that an armored droplet can absorb the electric stress differently (i.e., through either in-plane or out-of-plane particle rearrangements) depending on the strength of the applied electric field. Furthermore, we demonstrate that particle shells may fail through various crumpling instabilities, including ridge formation, folding, and wrinkling, as well as inward indentation.
Collapse
Affiliation(s)
- K Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - A Mikkelsen
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - T Vincent-Dospital
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| | - Z Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland. and PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
5
|
Abe K, Inasawa S. Buckling and Drying Kinetics of Particle-Stabilized Water Droplets Fully or Partially Immersed in an Oil Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:219-229. [PMID: 33373243 DOI: 10.1021/acs.langmuir.0c02800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have investigated the effect of buckling of particle-stabilized water droplets on the drying kinetics. Particle-stabilized water droplets in an oil phase were prepared and the shrinking modes of the droplets during drying were controlled by the wettability of the particles. We obtained water droplets with and without buckling and used them in drying experiments. The drying times were comparable when the droplets were fully immersed in a thick oil layer. However, when the thickness of the oil layer was smaller than the droplet diameter, the buckled droplets showed faster drying. Observation of the reflection images around the droplets suggested that the buckled droplets preferentially shrank in the height direction, while the droplets without buckling isotropically shrank. Mathematical models that assumed diffusion of dissolved water molecules in the oil layer showed good agreement with the experimental data. The effective water-oil interfacial area was constant in the buckled droplets, whereas it shrank in the droplets without buckling. This would be a reason for the faster drying of the partially immersed buckled droplets. Particulate shells on liquid droplets could be used to enhance droplet drying.
Collapse
Affiliation(s)
- Kohei Abe
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Ji X, Wang X, Zhang Y, Zang D. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:126601. [PMID: 32998118 DOI: 10.1088/1361-6633/abbcd8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
Collapse
Affiliation(s)
- Xiaoliang Ji
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Xiaolu Wang
- Institute of Welding and Surface Engineering Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, People's Republic of China
| | - Duyang Zang
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| |
Collapse
|
7
|
Khedr A, Striolo A. Self-assembly of mono- and poly-dispersed nanoparticles on emulsion droplets: antagonistic vs. synergistic effects as a function of particle size. Phys Chem Chem Phys 2020; 22:22662-22673. [PMID: 33015700 DOI: 10.1039/d0cp02588g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, using Dissipative Particle Dynamics simulations, we provide fundamental insights into the self-assembly of nanoparticles (NPs) on droplet surfaces in an oil-in-water emulsion. We highlight the effect of particle size on the arrangement of NPs for different interparticle interactions. NPs of two different sizes were considered. In general, when the NP-NP interaction is changed from repulsive to attractive, a transition in the NP arrangement occurs from weekly-connected networks to clusters of NPs separated by particle-free domains. When NP-NP interactions are strongly attractive, NPs yield small 3D aggregates on the droplet surface. These arrangements seem to agree with experimental observations reported in the literature. In addition, our simulations suggest that small NPs are able to diffuse more easily on the droplet surface, which leads to prompt self-organisation, while large NPs are more likely to form metastable structures, perhaps because of slow mobility and strong adsorption to the interface. Our analysis suggests that thermal fluctuations could provide the activation energy for the small NPs to escape local minima in the free energy landscape. The results obtained for systems containing NPs of two sizes provide evidence of size segregation on the droplet surface, which could be useful when NP self-assemblies are used, for example, to template supra-molecular materials. However, analysis of the simulated trajectories suggests that the results depend strongly on the initial configuration, as the larger NPs seem to impose barriers for the small NPs to adsorb and diffuse on the droplet surface.
Collapse
Affiliation(s)
- Abeer Khedr
- Department of Chemical Engineering, University College London, UK.
| | | |
Collapse
|
8
|
Khedr A, Striolo A. Quantification of Ostwald Ripening in Emulsions via Coarse-Grained Simulations. J Chem Theory Comput 2019; 15:5058-5068. [PMID: 31411875 DOI: 10.1021/acs.jctc.9b00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ostwald ripening is a diffusional mass transfer process that occurs in polydisperse emulsions, often with the result of threatening the emulsion stability. In this work, we design a simulation protocol that is capable of quantifying the process of Ostwald ripening at the molecular level. To achieve experimentally relevant time scales, the dissipative particle dynamics (DPD) simulation protocol is implemented. The simulation parameters are tuned to represent two benzene droplets dispersed in water. The coalescence between the two droplets is prevented via the introduction of membranes, which allow diffusion of benzene from one droplet to the other. The simulation results are quantified in terms of the changes in the droplet volume as a function of time. The results are in qualitative agreement with experiments. The agreement with the Lifshitz-Slyozov-Wagner theory becomes quantitative when the simulated solubility and diffusion coefficient of benzene-in-water are considered. The effect of two different surfactants was also investigated. In agreement with both experimental observations and theory, the addition of surfactants at moderate concentrations decreased the Ostwald ripening rate because of the reduction in the interfacial tension between benzene and water; as the surfactant film becomes dense, other phenomena are likely to further delay the Ostwald ripening. In fact, the results suggest that the surfactant that yields higher density at the benzene-water interface delayed more effectively Ostwald ripening. The formation of micelles can also affect the ripening rate, in qualitative agreement with experiments, although our simulations are not conclusive on such effects. Our simulations show that the coarse-grained DPD formalism is able to capture the molecular phenomena related to Ostwald ripening and reveal molecular level features that could help to understand experimental observations. The results could be useful for predicting and eventually controlling the long-term stability of emulsions.
Collapse
Affiliation(s)
- Abeer Khedr
- Department of Chemical Engineering , University College London , London WC1E 7JE , United Kingdom
| | - Alberto Striolo
- Department of Chemical Engineering , University College London , London WC1E 7JE , United Kingdom
| |
Collapse
|
9
|
Sicard F, Toro-Mendoza J, Striolo A. Nanoparticles Actively Fragment Armored Droplets. ACS NANO 2019; 13:9498-9503. [PMID: 31369231 PMCID: PMC7007273 DOI: 10.1021/acsnano.9b04454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/01/2019] [Indexed: 05/21/2023]
Abstract
Understanding the complexity of fragmentation processes is essential for regulating intercellular communication in mechanistic biology and developing bottom-up approaches in a large range of multiphase flow processes. In this context, self-fragmentation proceeds without any external mechanical energy input, allowing one to create efficiently micro- and nanodroplets. Here we examine self-fragmentation in emulsion nanodroplets stabilized by solid particles with different surface features. Mesoscopic modeling and accelerated dynamics simulations allow us to overcome the limitations of atomistic simulations and offer detailed insight into the interplay between the evolution of the droplet shape and the particle finite-size effects at the interface. We show that finite-size nanoparticles play an active role in the necking breakup, behaving like nanoscale razors, and affect strongly the thermodynamic properties of the system. The role played by the particles during self-fragmentation might be of relevance to multifunctional biomaterial design and tuning of signaling pathways in mechanistic biology.
Collapse
Affiliation(s)
- François Sicard
- Department
of Chemistry, King’s College London, SE1 1DB London, United Kingdom
- E-mail:
| | - Jhoan Toro-Mendoza
- Centro
de Estudios Interdisciplinarios de la Fisica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020A, Venezuela
| | - Alberto Striolo
- Department
of Chemical Engineering, University College
London, WC1E 7JE London, United Kingdom
| |
Collapse
|
10
|
Mikkelsen A, Rozynek Z. Mechanical Properties of Particle Films on Curved Interfaces Probed through Electric Field-Induced Wrinkling of Particle Shells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29396-29407. [PMID: 31329414 DOI: 10.1021/acsami.9b08045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Similar to the human skin, a monolayer of packed particles capillary bound to a liquid interface wrinkles when subjected to compressive stress. The induced wrinkles absorb the applied stress and do not disappear unless the stress is removed. Experimental and theoretical investigations of wrinkle formation typically concern flat particle monolayers subjected to uniaxial stress. In this work, we extend the results on wrinkling of particle-covered interfaces to the investigation of mechanical properties of particle films on a curved interface, that is, we study particle shells formed on droplets and subjected to hoop stress. Opposed to flat particle layers where liquid buoyancy alone acts as the effective stiffness, the mechanical properties of particle layers on small droplets are also affected by the surface curvature. We show here that this leads to formation of wrinkles with different characteristic wavelengths compared to those found at flat interfaces. Our experimental results also reveal that the wrinkle wavelength of particle shells is proportional to the square root of particle size and the size of the droplets on which the shells are formed. Wrinkling of particle layers composed of microparticles with diameters ranging from around 1-100 μm was induced using a novel approach combining electrodeformation and electrohydrodynamic flows. We demonstrate that our contactless approach for studying the mechanical properties of particle shells enables estimation of elasticity, particle film thickness, and bending stiffness of particle shells. The proposed approach is insensitive to both particle coverage and electric field strength. In addition, it enables manipulation of particle packing that is intimately linked with formation of wrinkling patterns. With a wide range of applications depending on accurate mechanical properties (e.g., drug-delivery capsules to self-healing materials), this work provides a valuable method to characterize the mechanical properties of shells and tailor their surface properties (i.e., permeability and roughness).
Collapse
Affiliation(s)
- A Mikkelsen
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
| | - Z Rozynek
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
11
|
Rozynek Z, Khobaib K, Mikkelsen A. Opening and Closing of Particle Shells on Droplets via Electric Fields and Its Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22840-22850. [PMID: 31145578 DOI: 10.1021/acsami.9b05194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Active, tunable, and reversible opening and closing of particle shells on droplets may facilitate chemical reactions in droplets and enable various small-scale laboratory operations, including online detection, measurement, and adjustment of droplet liquid. Manipulating various types of particle shells in a controlled manner requires new routes. This work provides a new strategy for controlling the spatial arrangement of particle-covered oil droplets using electric fields that expands the application of responsive droplets beyond the abovementioned examples. The behavior of stimulated particle-covered droplets is exploited in multiple ways: to form an active smart device, fabricate Janus and patchy shells, create an online diagnostic tool, and produce a tool for fundamental studies. Electric fields are used here to manipulate particle films on oil droplets through the synergetic action of droplet deformation and electrohydrodynamic liquid flows. First, the effects of electric field strength and liquid viscosity on droplet deformation, surface particle arrangements, and dynamics are examined in detail. Then three examples of applications of responsive particle-covered droplets are demonstrated. Our results show that the reversible opening and closing of the droplet's shells, composed of various types of particles, can be conveniently achieved through electric fields, opening up a new possibility for applications in optics, clinical diagnostics, microfluidics, and material engineering.
Collapse
Affiliation(s)
- Zbigniew Rozynek
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Khobaib Khobaib
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
| | - Alexander Mikkelsen
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
| |
Collapse
|
12
|
Sumer Z, Striolo A. Effects of droplet size and surfactants on anchoring in liquid crystal nanodroplets. SOFT MATTER 2019; 15:3914-3922. [PMID: 31011722 DOI: 10.1039/c9sm00291j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid crystal (LC) droplets attract scientific attention for many advanced applications, including, but not limited to optical and sensing devices. To aid experimental advancements, theoretical calculations have been conducted to quantify molecular driving forces responsible for the collective behaviour of LC molecules within micrometer-size spherical droplets. To quantify the LC molecular anchoring within spherical physical constraints, molecular simulations at atomistic resolution would be useful. In an attempt to bridge the gap between computational capabilities and experimental interest, coarse-grained simulations are used here to study nematic LC nanodroplets dispersed in water. A LC phase diagram is generated as a function of droplet size and temperature. The effect of adding surfactants on LC anchoring was quantified, considering surfactants of different molecular features. When few surfactants are present, they self-assemble at the droplet boojums regardless of their molecular features. All surfactants tested shifted LC orientation from bipolar to uniaxial. When the surfactants have a hydrophobic tail of sufficient length, they cause deviations from the spherical symmetry of LC droplets. Increasing the concentration of these surfactants enhances such phenomenon. Simulations were also conducted to assess the ability of the surfactants to prevent the agglomeration between two LC droplets. The results showed that coalescence was inevitable at all conditions and suggested that large enough surfactant concentrations can delay the phenomenon. The results presented could be helpful for designing novel surface-active compounds to develop optical and/or sensing devices at conditions in which mutual solubility between water and LCs is low.
Collapse
Affiliation(s)
- Zeynep Sumer
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | | |
Collapse
|
13
|
Qin S, Yong X. Controlling the stability of Pickering emulsions by pH-responsive nanoparticles. SOFT MATTER 2019; 15:3291-3300. [PMID: 30821791 DOI: 10.1039/c8sm02407c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrostatic dissipative particle dynamics simulations were conducted to model the interactions between emulsion droplets stabilized by pH-sensitive polyelectrolyte-grafted nanoparticles. Using a steered molecular dynamics approach, a mechanistic study of forced coalescence was performed to probe the resistance between two particle-covered droplets. The degree of ionization of the grafted polyelectrolytes was adjusted to capture the pH responsiveness. The maximal resistance forces were measured to quantitatively discriminate the efficacy of particles in stabilizing emulsions at different degrees of ionization. Through analyzing droplet dynamics, resistance force variation, and electric field, we discovered that the resistance is attributed to direct electrostatic repulsion, the image charge effect near the water-oil interface, and steric hindrance among extended polymers. When the particle density on the droplet surface is relatively low, the increasing resistance forces at higher degrees of ionization can effectively prevent droplet coalescence. Oppositely, the ionization compromises emulsion stability when the particle surface coverage is high. Substantial desorption of particles from the interface was triggered as the degree of ionization increases. This in turn reduces resistance force and facilitates coalescence. Moreover, the nanoparticles prevent coalescence at high surface coverages by forming dense layers at individual interfaces, while the particle bridges straddling two interfaces were found at low surface coverages, which can also keep the droplets apart.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| | | |
Collapse
|
14
|
Garbin V. Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Mikkelsen A, Khobaib K, Eriksen FK, Måløy KJ, Rozynek Z. Particle-covered drops in electric fields: drop deformation and surface particle organization. SOFT MATTER 2018; 14:5442-5451. [PMID: 29901062 DOI: 10.1039/c8sm00915e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Drops covered by adsorbed particles are a prominent research topic because they hold promise for a variety of practical applications. Unlocking the enormous potential of particle-laden drops in new material fabrication, for instance, requires understanding how surface particles affect the electrical and deformation properties of drops, as well as developing new routes for particle manipulation at the interface of drops. In this study, we utilized electric fields to experimentally investigate the mechanics of particle-covered silicone oil drops suspended in castor oil, as well as particle assembly at drop surfaces. We used particles with electrical conductivities ranging from insulating polystyrene to highly conductive silver. When subjected to electric fields, drops can change shape, rotate, or break apart. In the first part of this work, we demonstrate how the deformation magnitude and shape of drops, as well as their electrical properties, are affected by electric field strength, particle size, conductivity, and coverage. We also discuss the role of electrohydrodynamic flows on drop deformation. In the second part, we present the electric field-directed assembly and organization of particles at drop surfaces. In this regard, we studied various parameters in detail, including electric field strength, particle size, coverage, and electrical conductivity. Finally, we present a novel method for controlling the local particle coverage and packing of particles on drop surfaces by simply tuning the frequency of the applied electric field. This approach is expected to find uses in optical materials and applications.
Collapse
Affiliation(s)
- A Mikkelsen
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | | | | | | | | |
Collapse
|
16
|
Rozynek Z, Bielas R, Józefczak A. Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields. SOFT MATTER 2018; 14:5140-5149. [PMID: 29881858 DOI: 10.1039/c8sm00671g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered by adsorbed particles are used in a wide range of research studies and applications, including stabilising emulsions used in the food or cosmetic industries, and fabricating new materials, such as microcapsules or multi-cavity structures. Pickering emulsions are commonly prepared by bulk emulsification techniques, for instance, by ultrasonic homogenisation or mechanical stirring, by membrane emulsification, or with the use of microfluidics. The latter two methods typically allow for more precise control of the droplet size distribution, whereas the bulk techniques guarantee high throughput. Here we propose a new bulk approach to fabricating Pickering emulsions by utilising electric fields. We prepare oil-in-oil emulsions stabilised by microparticles and control the mean size of the Pickering droplets. In our approach we take advantage of total surface area reduction of emulsion droplets by electrocoalescence. This leads to an increase in particle coverage, and eventually to formation of densely packed particle shells on Pickering droplets. First, we prepare an unstable pre-emulsion with droplets having small sizes and low particle coverages, from which the final Pickering emulsion is formed via consecutive coalescence events speeded up by application of electric fields. We monitor the development of the emulsions with optical microscopy imaging. The results demonstrate that the utilisation of electric fields goes beyond the mere role of enhancing coalescence; it plays an important role in surface particle manipulation and droplet rotation that further promote formation of stable particle-covered drops.
Collapse
Affiliation(s)
- Z Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
17
|
Gu C, Botto L. Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study. SOFT MATTER 2018; 14:711-724. [PMID: 29354834 DOI: 10.1039/c7sm01912b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
Collapse
Affiliation(s)
- Chuan Gu
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK.
| | | |
Collapse
|
18
|
Sumer Z, Striolo A. Manipulating molecular order in nematic liquid crystal capillary bridgesviasurfactant adsorption: guiding principles from dissipative particle dynamics simulations. Phys Chem Chem Phys 2018; 20:30514-30524. [DOI: 10.1039/c8cp04492a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effect of surfactant tail length on the orientation of liquid crystals is investigated with dissipative particle dynamics (DPD) simulations.
Collapse
Affiliation(s)
- Zeynep Sumer
- Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| | - Alberto Striolo
- Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|