1
|
Segovia-González XF, Villagrana-Escareño MV, Ríos-Ramírez M, de la Cruz VS, Mejía-Hernández JN, Cuellar-Camacho JL, Patrón-Soberano A, Sportsman R, Ruiz-García J. An Observation of a Very High Swelling of Bromovirus Members at Specific Ionic Strengths and pH. Viruses 2023; 15:2046. [PMID: 37896823 PMCID: PMC10612077 DOI: 10.3390/v15102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cowpea chlorotic mottle virus (CCMV) and brome mosaic virus (BMV) are naked plant viruses with similar characteristics; both form a T = 3 icosahedral protein capsid and are members of the bromoviridae family. It is well known that these viruses completely disassemble and liberate their genome at a pH around 7.2 and 1 M ionic strength. However, the 1 M ionic strength condition is not present inside cells, so an important question is how these viruses deliver their genome inside cells for their viral replication. There are some studies reporting the swelling of the CCMV virus using different techniques. For example, it is reported that at a pH~7.2 and low ionic strength, the swelling observed is about 10% of the initial diameter of the virus. Furthermore, different regions within the cell are known to have different pH levels and ionic strengths. In this work, we performed several experiments at low ionic strengths of 0.1, 0.2, and 0.3 and systematically increased the pH in 0.2 increments from 4.6 to 7.4. To determine the change in virus size at the different pHs and ionic strengths, we first used dynamic light scattering (DLS). Most of the experiments agree with a 10% capsid swelling under the conditions reported in previous works, but surprisingly, we found that at some particular conditions, the virus capsid swelling could be as big as 20 to 35% of the original size. These measurements were corroborated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) around the conditions where the big swelling was determined by DLS. Therefore, this big swelling could be an easier mechanism that viruses use inside the cell to deliver their genome to the cell machinery for viral replication.
Collapse
Affiliation(s)
- Xochitl Fabiola Segovia-González
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Maria Veronica Villagrana-Escareño
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Maricarmen Ríos-Ramírez
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Vianey Santiago de la Cruz
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Jessica Nathaly Mejía-Hernández
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Jose Luis Cuellar-Camacho
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| | - Araceli Patrón-Soberano
- Molecular Biology Division, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico;
| | - Richard Sportsman
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA;
| | - Jaime Ruiz-García
- Biologycal Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico; (X.F.S.-G.); (M.V.V.-E.); (M.R.-R.); (V.S.d.l.C.); (J.N.M.-H.); (J.L.C.-C.)
| |
Collapse
|
2
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Duran-Meza AL, Villagrana-Escareño MV, Ruiz-García J, Knobler CM, Gelbart WM. Controlling the surface charge of simple viruses. PLoS One 2021; 16:e0255820. [PMID: 34506491 PMCID: PMC8432797 DOI: 10.1371/journal.pone.0255820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/25/2021] [Indexed: 12/28/2022] Open
Abstract
The vast majority of plant viruses are unenveloped, i.e., they lack a lipid bilayer that is characteristic of most animal viruses. The interactions between plant viruses, and between viruses and surfaces, properties that are essential for understanding their infectivity and to their use as bionanomaterials, are largely controlled by their surface charge, which depends on pH and ionic strength. They may also depend on the charge of their contents, i.e., of their genes or-in the instance of virus-like particles-encapsidated cargo such as nucleic acid molecules, nanoparticles or drugs. In the case of enveloped viruses, the surface charge of the capsid is equally important for controlling its interaction with the lipid bilayer that it acquires and loses upon leaving and entering host cells. We have previously investigated the charge on the unenveloped plant virus Cowpea Chlorotic Mottle Virus (CCMV) by measurements of its electrophoretic mobility. Here we examine the electrophoretic properties of a structurally and genetically closely related bromovirus, Brome Mosaic Virus (BMV), of its capsid protein, and of its empty viral shells, as functions of pH and ionic strength, and compare them with those of CCMV. From measurements of both solution and gel electrophoretic mobilities (EMs) we find that the isoelectric point (pI) of BMV (5.2) is significantly higher than that of CCMV (3.7), that virion EMs are essentially the same as those of the corresponding empty capsids, and that the same is true for the pIs of the virions and of their cleaved protein subunits. We discuss these results in terms of current theories of charged colloidal particles and relate them to biological processes and the role of surface charge in the design of new classes of drug and gene delivery systems.
Collapse
Affiliation(s)
- A. L. Duran-Meza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - M. V. Villagrana-Escareño
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - J. Ruiz-García
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - C. M. Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - W. M. Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Edwardson TGW, Tetter S, Hilvert D. Two-tier supramolecular encapsulation of small molecules in a protein cage. Nat Commun 2020; 11:5410. [PMID: 33106476 PMCID: PMC7588467 DOI: 10.1038/s41467-020-19112-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Expanding protein design to include other molecular building blocks has the potential to increase structural complexity and practical utility. Nature often employs hybrid systems, such as clathrin-coated vesicles, lipid droplets, and lipoproteins, which combine biopolymers and lipids to transport a broader range of cargo molecules. To recapitulate the structure and function of such composite compartments, we devised a supramolecular strategy that enables porous protein cages to encapsulate poorly water-soluble small molecule cargo through templated formation of a hydrophobic surfactant-based core. These lipoprotein-like complexes protect their cargo from sequestration by serum proteins and enhance the cellular uptake of fluorescent probes and cytotoxic drugs. This design concept could be applied to other protein cages, surfactant mixtures, and cargo molecules to generate unique hybrid architectures and functional capabilities.
Collapse
Affiliation(s)
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release 2020; 325:176-190. [DOI: 10.1016/j.jconrel.2020.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
|
6
|
Encapsidation of Different Plasmonic Gold Nanoparticles by the CCMV CP. Molecules 2020; 25:molecules25112628. [PMID: 32516956 PMCID: PMC7321416 DOI: 10.3390/molecules25112628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Different types of gold nanoparticles have been synthesized that show great potential in medical applications such as medical imaging, bio-analytical sensing and photothermal cancer therapy. However, their stability, polydispersity and biocompatibility are major issues of concern. For example, the synthesis of gold nanorods, obtained through the elongated micelle process, produce them with a high positive surface charge that is cytotoxic, while gold nanoshells are unstable and break down in a few weeks due to the Ostwald ripening process. In this work, we report the self-assembly of the capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) around spherical gold nanoparticles, gold nanorods and gold nanoshells to form virus-like particles (VLPs). All gold nanoparticles were synthesized or treated to give them a negative surface charge, so they can interact with the positive N-terminus of the CP leading to the formation of the VLPs. To induce the protein self-assembly around the negative gold nanoparticles, we use different pH and ionic strength conditions determined from a CP phase diagram. The encapsidation with the viral CP will provide the nanoparticles better biocompatibility, stability, monodispersity and a new biological substrate on which can be introduced ligands toward specific cells, broadening the possibilities for medical applications.
Collapse
|
7
|
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020; 15:2439-2483. [PMID: 32346289 PMCID: PMC7169473 DOI: 10.2147/ijn.s227805] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nahidah Ibrahim Hammadi
- Department of Histology, College of Veterinary Medicine, University of Al-Anbar, Ramadi, Republic of Iraq
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kawa Mohammad Amin
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Kepala Batas13200, Pulau Pinang, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Villagrana-Escareño MV, Reynaga-Hernández E, Galicia-Cruz OG, Durán-Meza AL, De la Cruz-González V, Hernández-Carballo CY, Ruíz-García J. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4630891. [PMID: 31781617 PMCID: PMC6855080 DOI: 10.1155/2019/4630891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Virus-like particles (VLPs) are being used for therapeutic developments such as vaccines and drug nanocarriers. Among these, plant virus capsids are gaining interest for the formation of VLPs because they can be safely handled and are noncytotoxic. A paradigm in virology, however, is that plant viruses cannot transfect and deliver directly their genetic material or other cargos into mammalian cells. In this work, we prepared VLPs with the CCMV capsid and the mRNA-EGFP as a cargo and reporter gene. We show, for the first time, that these plant virus-based VLPs are capable of directly transfecting different eukaryotic cell lines, without the aid of any transfecting adjuvant, and delivering their nucleic acid for translation as observed by the presence of fluorescent protein. Our results show that the CCMV capsid is a good noncytotoxic container for genome delivery into mammalian cells.
Collapse
Affiliation(s)
- María V. Villagrana-Escareño
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Reynaga-Hernández
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Othir G. Galicia-Cruz
- Analytical Pharmacology Laboratory, Faculty of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Ana L. Durán-Meza
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Viridiana De la Cruz-González
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Jaime Ruíz-García
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
9
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
10
|
He G, Ma Y, Zhou H, Sun S, Wang X, Qian H, Xu Y, Miao Z, Zha Z. Mesoporous NiS2 nanospheres as a hydrophobic anticancer drug delivery vehicle for synergistic photothermal–chemotherapy. J Mater Chem B 2019; 7:143-149. [DOI: 10.1039/c8tb02473a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monodispersed mesoporous NiS2 nanospheres (mNiS2 NSs) have been successfully developed here through a facile solvothermal method to act as a hydrophobic drug delivery vehicle for synergistic photothermal–chemo treatment of cancer.
Collapse
Affiliation(s)
- Gang He
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yan Ma
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Hu Zhou
- The First Affiliated Hospital of University of Science and Technology of China
- Anhui Provincial Cancer Hospital
- Hefei
- P. R. China
| | - Siyuan Sun
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Xianwen Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Haisheng Qian
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yan Xu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| |
Collapse
|
11
|
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine 2018; 13:6109-6121. [PMID: 30349240 PMCID: PMC6188155 DOI: 10.2147/ijn.s178077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
| | - Govindarajan Karthivashan
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Shin Young Park
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Joonsoo Kim
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Dong-Kug Choi
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| |
Collapse
|