1
|
Dabbous A, Bauer P, Marcucci C, Périé S, Gahlot S, Lombard C, Caillat S, Ravanat JL, Mouesca JM, Kodjikian S, Barbara A, Dubois F, Maurel V. Hybrid CdSe/ZnS Quantum Dot-Gold Nanoparticle Composites Assembled by Click Chemistry: Toward Affordable and Efficient Redox Photocatalysts Working with Visible Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56167-56180. [PMID: 38058110 DOI: 10.1021/acsami.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A new modular, easy-to-synthesize photocatalyst was prepared by assembling colloidal CdSe/ZnS quantum dots (QD) and gold nanoparticles (AuNP) via their ligands thanks to copper-catalyzed azide to alkyne cycloaddition (CuAAC) click chemistry. The resulting composite (QD-AuNP) photocatalyst was tested with a benchmark photoredox system previously reported by our group, for which QD alone acted as a photocatalyst but with a modest quantum yield (QY = 0.06%) and turnover number (TON = 350 in 3 h) due to poor charge separation. After optimization, the QD-AuNP composites exhibited much improved photocatalytic performances: up to five times higher TON (2600 in 3 h) and up to 24 times faster reaction in the first 10 min of visible irradiation. Such an improvement is attributed to an efficient electron transfer from QD to AuNP in the photoexcited QD-AuNP composites, which ensures a much better charge separation than that in QD alone. This was confirmed by studying both (i) the quenching of the QD photoluminescence during the synthesis of the QD-AuNP composites and (ii) the blue shift of the AuNP plasmon absorption band due to the accumulation of up to 7400 electrons per AuNP in QD-AuNP composites under visible light irradiation in the presence of electron donors.
Collapse
Affiliation(s)
- Ali Dabbous
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Pierre Bauer
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Coralie Marcucci
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sandy Périé
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sapna Gahlot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Christian Lombard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Sylvain Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Stéphanie Kodjikian
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Aude Barbara
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Fabien Dubois
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Vincent Maurel
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
2
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Ben-Shahar Y, Stone D, Banin U. Rich Landscape of Colloidal Semiconductor-Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications. Chem Rev 2023; 123:3790-3851. [PMID: 36735598 PMCID: PMC10103135 DOI: 10.1021/acs.chemrev.2c00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor-metal hybrid nanoparticles (HNPs) focusing on metal-chalcogenides-metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor-metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- Department of Physical Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona74100, Israel
| | - David Stone
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
4
|
Gogoi H, Pathak SS, Dasgupta S, Panchakarla LS, Nath S, Datta A. Exciton Dynamics in Colloidal CdS Quantum Dots with Intense and Stokes Shifted Photoluminescence in a Single Decay Channel. J Phys Chem Lett 2022; 13:6770-6776. [PMID: 35853205 DOI: 10.1021/acs.jpclett.2c01623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CdS quantum dots (QDs), synthesized by a sol-gel method, exhibit significantly Stokes shifted bright photoluminescence (PL), predominantly from the trap states. Surprisingly, the PL decay at the emission maximum is single-exponential. This is an unusual observation for as-prepared QDs and indicates a narrow distribution in the nature of trap states. A closer look reveals an additional fast component for the decays at shorter emission wavelengths, presumably due to the band edge emission, which remains elusive in the steady-state spectra. Indeed, a significantly narrower and blue-shifted emission band is observed in the decay-associated spectra. The contribution of this component to the steady-state PL intensity is shown to be overwhelmed by that of the significantly stronger trap emission. Exciton dynamics in the quantum dots is elucidated using transient absorption spectra, in which the stimulated emission is observed even at low pump power.
Collapse
Affiliation(s)
- Hemen Gogoi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sushil Swaroop Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Choi JY, Park WW, Park B, Sul S, Kwon OH, Song H. Optimal Length of Hybrid Metal–Semiconductor Nanorods for Photocatalytic Hydrogen Generation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Bumjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soohwan Sul
- Analytical Engineering Group, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyunjoon Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Lee KH, Jang H, Kim YS, Lee C, Cho SH, Kim M, Son H, Bae KB, Dao DV, Jung YS, Lee I. Synergistic SERS Enhancement in GaN-Ag Hybrid System toward Label-Free and Multiplexed Detection of Antibiotics in Aqueous Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100640. [PMID: 34363354 PMCID: PMC8498916 DOI: 10.1002/advs.202100640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Indexed: 05/27/2023]
Abstract
Noble metal-based surface-enhanced Raman spectroscopy (SERS) has enabled the simple and efficient detection of trace-amount molecules via significant electromagnetic enhancements at hot spots. However, the small Raman cross-section of various analytes forces the use of a Raman reporter for specific surface functionalization, which is time-consuming and limited to low-molecular-weight analytes. To tackle these issues, a hybrid SERS substrate utilizing Ag as plasmonic structures and GaN as charge transfer enhancement centers is presented. By the conformal printing of Ag nanowires onto GaN nanopillars, a highly sensitive SERS substrate with excellent uniformity can be fabricated. As a result, remarkable SERS performance with a substrate enhancement factor of 1.4 × 1011 at 10 fM for rhodamine 6G molecules with minimal spot variations can be realized. Furthermore, quantification and multiplexing capabilities without surface treatments are demonstrated by detecting harmful antibiotics in aqueous solutions. This work paves the way for the development of a highly sensitive SERS substrate by constructing complex metal-semiconductor architectures.
Collapse
Affiliation(s)
- Kang Hyun Lee
- Department of Semiconductor Systems EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yoon Seok Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Chul‐Ho Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Seunghee H. Cho
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Minjoon Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hoki Son
- Department of Materials Science and EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Kang Bin Bae
- Department of Materials Science and EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Dung Van Dao
- Department of Materials Science and EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - In‐Hwan Lee
- Department of Semiconductor Systems EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Materials Science and EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
8
|
Nawrot KC, Wawrzyńczyk D, Bezkrovnyi O, Kępiński L, Cichy B, Samoć M, Nyk M. Functional CdS-Au Nanocomposite for Efficient Photocatalytic, Photosensitizing, and Two-Photon Applications. NANOMATERIALS 2020; 10:nano10040715. [PMID: 32290061 PMCID: PMC7221832 DOI: 10.3390/nano10040715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
We demonstrate a low-temperature synthesis of hydrophilic, penicillamine-stabilized hybrid CdS-Au nanoparticles (NPs) utilizing different Au concentrations. The obtained hybrid nanomaterials exhibit photoluminescence quenching and emission lifetime reduction in comparison with their raw semiconductor CdS NPs counterparts. An increase of concentration of Au present at the surface of CdS leads to lower photoluminescence intensity and faster emission decays, suggesting more efficient charge separation when larger Au domains are present. For photocatalysis studies, we performed methylene blue (MB) absorption measurements under irradiation in the presence of CdS-Au NPs. After 1 h of light exposure, we observed the absorbance decrease to about 35% and 10% of the initial value for the CdS-5Au and CdS-7.5Au (the hybrid NPs obtained in a presence of 5.0 and 7.5 mM Au), respectively, which indicates MB reduction caused by electrons effectively separated from holes on metal surface. In further similar photocatalysis experiments, we measured bovine serum albumin (BSA) integrated photoluminescence intensity quenching in the presence of CdS-Au NPs, with a 50% decrease being obtained for CdS-2.5Au NPs and CdS-5Au NPs, with a faster response rate detected for the system prepared with a higher Au concentration. The results suggest hole-driven reactive oxygen species (ROS) production, causing BSA degeneration. Finally, we performed two-photon excited emission (TPEE) measurements for CdS-5Au NPs, obtaining their two-photon absorption (TPA) cross-section values up to 15.8 × 103 GM (Goeppert-Mayer units). We conclude that the obtained water-soluble CdS-Au NPs exhibit potential triple functionalities as photocatalysts for reduction and oxidation reactions as well as materials for two-photon absorption applications, so that they may be considered as future theranostics.
Collapse
Affiliation(s)
- Katarzyna C. Nawrot
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (K.C.N.); (D.W.); (M.S.)
| | - Dominika Wawrzyńczyk
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (K.C.N.); (D.W.); (M.S.)
| | - Oleksii Bezkrovnyi
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland; (O.B.); (L.K.); (B.C.)
| | - Leszek Kępiński
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland; (O.B.); (L.K.); (B.C.)
| | - Bartłomiej Cichy
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland; (O.B.); (L.K.); (B.C.)
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (K.C.N.); (D.W.); (M.S.)
| | - Marcin Nyk
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (K.C.N.); (D.W.); (M.S.)
- Correspondence: ; Tel.: +48-71-320-2316
| |
Collapse
|
9
|
Ghosh A, Chaudhary DK, Mandal A, Prodhan S, Chauhan KK, Vihari S, Gupta G, Datta PK, Bhattacharyya S. Core/Shell Nanocrystal Tailored Carrier Dynamics in Hysteresisless Perovskite Solar Cells with ∼20% Efficiency and Long Operational Stability. J Phys Chem Lett 2020; 11:591-600. [PMID: 31887041 DOI: 10.1021/acs.jpclett.9b03774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ambient stability, hysteresis, and trap states in organo-halide perovskite solar cells (PSCs) are correlated to the influence of interlayer interfaces and grain boundaries. Astute incorporation of Cu2ZnSnS4 (CZTS) and Au/CZTS core/shell nanocrystals (NCs) can realize the goal of simultaneously achieving better performance and ambient stability of the PSCs. With optimized Au/CZTS NC size and concentration in the photoactive layer, power conversion efficiency can be increased up to 19.97 ± 0.6% with ambient air stability >800 h, as compared to 14.46 ± 1.02% for the unmodified devices. Through efficient carrier generation by CZTS and perovskite, accompanied by the plasmonic effect of Au, carrier density is sufficiently increased as validated by transient absorption spectroscopy. NCs facilitate the interfacial charge transfer by suitable band alignment and removal of recombination centers such as metallic Pb0, surface defects, or impurity sites. NC embedding also increases the perovskite grain size and assists in pinhole filling, reducing the trap state density.
Collapse
Affiliation(s)
- Anima Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Dhirendra K Chaudhary
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Sayan Prodhan
- Department of Physics , Indian Institute of Technology (IIT) Kharagpur , Kharagpur 721302 , India
| | - Kamlesh Kumar Chauhan
- Department of Physics , Indian Institute of Technology (IIT) Kharagpur , Kharagpur 721302 , India
| | - Saket Vihari
- Advanced Materials and Devices Division , CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg , New Delhi 110012 , India
| | - Govind Gupta
- Advanced Materials and Devices Division , CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg , New Delhi 110012 , India
| | - Prasanta Kumar Datta
- Department of Physics , Indian Institute of Technology (IIT) Kharagpur , Kharagpur 721302 , India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| |
Collapse
|
10
|
Moon SY, Song HC, Gwag EH, Nedrygailov II, Lee C, Kim JJ, Doh WH, Park JY. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO 2 nanotube arrays. NANOSCALE 2018; 10:22180-22188. [PMID: 30484456 DOI: 10.1039/c8nr05144e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of hot carriers generated from the decay of localized surface plasmon resonance in noble metal nanoparticles is a promising concept for photocatalysis. Here, we report the enhancement of photocatalytic activity by the flow of hot electrons on TiO2 nanotube arrays decorated with 5-30 nm Au nanoparticles as photoanodes for photoelectrochemical water splitting. This enhanced photocatalytic activity is correlated to the size of the Au nanoparticles, where higher oxygen evolution was observed on the smaller nanoparticles. Conductive atomic force microscopy and ultraviolet photoelectron spectroscopy were used to characterize the Schottky barrier between Au and TiO2, which reveals a reduction in the Schottky barrier with the smaller Au nanoparticles and produces an enhanced transfer of photoinduced hot carriers. This study confirms that the higher photocatalytic activity was indeed driven by the hot electron flux generated from the decay of localized surface plasmon resonance.
Collapse
Affiliation(s)
- Song Yi Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Maiti S, Dana J, Ghosh HN. Correlating Charge‐Carrier Dynamics with Efficiency in Quantum‐Dot Solar Cells: Can Excitonics Lead to Highly Efficient Devices? Chemistry 2018; 25:692-702. [DOI: 10.1002/chem.201801853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Sourav Maiti
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
- Department of ChemistrySavitribai Phule Pune University Ganeshkhind Pune 411007 India
| | - Jayanta Dana
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
| | - Hirendra N. Ghosh
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| |
Collapse
|
12
|
Ben-Shahar Y, Philbin JP, Scotognella F, Ganzer L, Cerullo G, Rabani E, Banin U. Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer. NANO LETTERS 2018; 18:5211-5216. [PMID: 29985622 DOI: 10.1021/acs.nanolett.8b02169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique, synergistic electronic and optical properties as a result of combining semiconductor and metal physics via a controlled interface. These structures can exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. The combination of the photocatalytic activity of the metal domain with the ability to generate and accommodate multiple excitons in the semiconducting domain can lead to improved photocatalytic performance because injecting multiple charge carriers into the active catalytic sites can increase the quantum yield. Herein, we show a significant metal domain size dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation efficiencies under nonlinear excitation conditions. An understanding of this size dependence allows one to control the charge carrier dynamics following the absorption of light. Using a model hybrid semiconductor-metal CdS-Au nanorod system and combining transient absorption and hydrogen evolution kinetics, we reveal faster and more efficient charge separation and transfer under multiexciton excitation conditions for large metal domains compared to small ones. Theoretical modeling uncovers a competition between the kinetics of Auger recombination and charge separation. A crossover in the dominant process from Auger recombination to charge separation as the metal domain size increases allows for effective multiexciton dissociation and harvesting in large metal domain HNPs. This was also found to lead to relative improvement of their photocatalytic activity under nonlinear excitation conditions.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - John P Philbin
- Department of Chemistry , University of California and Lawrence Berkeley National Laboratory , Berkeley , California 94720-1460 , United States
| | | | - Lucia Ganzer
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Milan 20133 , Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Milan 20133 , Italy
| | - Eran Rabani
- Department of Chemistry , University of California and Lawrence Berkeley National Laboratory , Berkeley , California 94720-1460 , United States
- The Sackler Institute for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv , Israel 69978
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
13
|
Dana J, Maity P, Jana B, Maiti S, Ghosh HN. Concurrent Ultrafast Electron- and Hole-Transfer Dynamics in CsPbBr 3 Perovskite and Quantum Dots. ACS OMEGA 2018; 3:2706-2714. [PMID: 31458549 PMCID: PMC6641258 DOI: 10.1021/acsomega.8b00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 05/22/2023]
Abstract
Ultrafast charge-transfer (i.e., electron and hole) dynamics has been investigated between the cesium lead bromide (CsPbBr3, CPB) perovskite nanocrystals (NCs) and cadmium selenide (CdSe) quantum dots (QDs) as a new composite material for photocatalytic and photovoltaic applications. The CPB NCs have been synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) pattern. The redox levels (i.e., conduction band (CB) and valence band (VB)) of the CPB NCs and CdSe QDs suggest the feasibility of photoexcited electron transfer from CPB NCs to CdSe QDs and photoexcited hole transfer from CdSe QDs to CPB NCs, and it has been confirmed by both steady-state and time-resolved spectroscopy. To investigate the electron- and hole-transfer dynamics in ultrafast time scale, we have performed femtosecond up-conversion and femtosecond transient absorption studies. The measured electron-transfer time from CPB NCs to CdSe QDs and hole-transfer time from CdSe QDs to CPB NCs were found to be 550 and 750 fs, respectively. Interestingly, the charge-transfer process found to be restricted in CPB/CdSe@CdS core-shell system where electron transfer from CPB NCs to core shell takes place, but the hole transfer from core shell to CPB NCs found to be restricted due to CdS shell making the process thermodynamically nonviable. Our observation has suggested that after the photoexcitation of CPB NCs/CdSe QDs composite system, a charge-separated state is formed where the electrons are localized in CB of CdSe QDs and holes are localized in VB of CPB NCs. This makes the composite system a better material for efficient light harvesting and photocatalytic material as compared to the individual ones.
Collapse
Affiliation(s)
- Jayanta Dana
- Radiation
and Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Partha Maity
- Radiation
and Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
| | - Biswajit Jana
- Radiation
and Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
| | - Sourav Maiti
- Radiation
and Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Department
of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Hirendra N. Ghosh
- Radiation
and Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
- Institute
of Nano Science and Technology, Mohali, Punjab 160062, India
- E-mail: ,
| |
Collapse
|
14
|
Dana J, Maiti S, Tripathi VS, Ghosh HN. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell. Chemistry 2018; 24:2418-2425. [DOI: 10.1002/chem.201705127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jayanta Dana
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400085 India
- Homi Bhabha National Institute; Anushakti Nagar Mumbai 400094 India
| | - Sourav Maiti
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400085 India
- Department of Chemistry; Savitribai Phule Pune University; Ganeshkhind Pune 411007 India
| | - Vaidehi S. Tripathi
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Hirendra N. Ghosh
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400085 India
- Homi Bhabha National Institute; Anushakti Nagar Mumbai 400094 India
- Institute of Nano Science and Technology; Mohali Punjab 160062 India
| |
Collapse
|
15
|
Nakibli Y, Mazal Y, Dubi Y, Wächtler M, Amirav L. Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. NANO LETTERS 2018; 18:357-364. [PMID: 29236508 DOI: 10.1021/acs.nanolett.7b04210] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hybrid semiconductor-metallic nanostructures play an important role in a wide range of applications and are key components in photocatalysis. Here we reveal that the nature of a nanojunction formed between a semiconductor nanorod and metal nanoparticle is sensitive to the size of the metal component. This is reflected in the activity toward hydrogen production, emission quantum yields, and the efficiency of charge separation which is determined by transient absorption spectroscopy. A set of Ni decorated CdSe@CdS nanorods with different tip size were examined, and an optimal metal domain size of 5.2 nm was obtained. Remarkably, charge separation time constants were found to be nonvariant with metal tip size. It is proposed that electron transfer mechanism encompasses two consecutive but separate processes: slow charge migration along the rod toward the interface, followed by fast interface crossing of the electron from the semiconductor into the metal phase. The first migration step dominates the time constant for the charge separation process and is not affected by the metal size. The efficiency of charge separation on the other hand was found to be sensitive to metal size. It is suggested that Coulomb blockade charging energy and a size-dependent Schottky barrier contribute to the metal size effect on charge transfer probability across the semiconductor-metal nanojunction. These two opposing trends result in an optimal metal size domain for the cocatalyst. This work is expected to benefit a broad range of applications utilizing semiconductor-metal nanocomposites.
Collapse
Affiliation(s)
- Yifat Nakibli
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Yair Mazal
- Department of Chemistry and the Ilse Katz center for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Yonatan Dubi
- Department of Chemistry and the Ilse Katz center for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| |
Collapse
|
16
|
Mondal N, De A, Samanta A. All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots. NANOSCALE 2018; 10:639-645. [PMID: 29238789 DOI: 10.1039/c7nr07830g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Excitation of semiconductor quantum dots (QDs) by photons possessing energy higher than the band-gap creates a hot electron-hole pair, which releases its excess energy as waste heat or under certain conditions (when hν > 2Eg) produces multiple excitons. Extraction of these hot carriers and multiple excitons is one of the key strategies for enhancing the efficiency of QD-based photovoltaic devices. However, this is a difficult task as competing carrier cooling and relaxation of multiple excitons (through Auger recombination) are ultrafast processes. Herein, we study the potential of all-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br) as harvesters of these short-lived species from photo-excited CdTe QDs. The femtosecond transient absorption measurements show CsPbX3 mediated extraction of both hot and thermalized electrons of the QDs (under a low pump power) and (under a high pump fluence) extraction of multiple excitons prior to their Auger assisted recombination. A faster timescale of thermalized electron transfer (∼2 ps) and a higher extraction efficiency of hot electrons (∼60%) are observed in the presence of CsPbBr3. These observations demonstrate the potential of all-inorganic perovskite NCs in the extraction of these short-lived energy rich species implying that complexes of the QDs and perovskite NCs are better suited for improving the efficiency of QD-sensitized solar cells.
Collapse
Affiliation(s)
- Navendu Mondal
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | | | | |
Collapse
|