1
|
Branzi L, Liang J, Dee G, Kavanagh A, Gun’ko YK. Multishell Silver Indium Selenide-Based Quantum Dots and Their Poly(methyl methacrylate) Composites for Application in Red-Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37017-37027. [PMID: 38968699 PMCID: PMC11261562 DOI: 10.1021/acsami.4c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
In this work, the production of novel multishell silver indium selenide quantum dots (QDs) shelled with zinc selenide and zinc sulfide through a multistep synthesis precisely designed to develop high-quality red-emitting QDs is explored. The formation of the multishell nanoheterostructure significantly improves the photoluminescence quantum yield of the nanocrystals from 3% observed for the silver indium selenide core to 27 and 46% after the deposition of the zinc selenide and zinc sulfide layers, respectively. Moreover, the incorporation of the multishelled QDs in a poly(methyl methacrylate) (PMMA) matrix via in situ radical polymerization is investigated, and the role of thiol ligand passivation is proven to be fundamental for the stabilization of the QDs during the polymerization step, preventing their decomposition and the relative luminescence quenching. In particular, the role of interface chemistry is investigated by considering both surface passivation by inorganic zinc chalcogenide layers, which allows us to improve the optical properties, and organic thiol ligand passivation, which is fundamental to ensuring the chemical stability of the nanocrystals during in situ radical polymerization. In this way, it is possible to produce silver-indium selenide QD-PMMA composites that exhibit bright red luminescence and high transparency, making them promising for potential applications in photonics. Finally, it is demonstrated that the new silver indium selenide QD-PMMA composites can serve as an efficient color conversion layer for the production of red light-emitting diodes.
Collapse
Affiliation(s)
- Lorenzo Branzi
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Jinming Liang
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Garret Dee
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Aoife Kavanagh
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Yurii K. Gun’ko
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
2
|
Jeong S, Ko M, Nam S, Oh JH, Park SM, Do YR, Song JK. Enhancement mechanism of quantum yield in core/shell/shell quantum dots of ZnS-AgIn 5S 8/ZnIn 2S 4/ZnS. NANOSCALE ADVANCES 2024; 6:925-933. [PMID: 38298589 PMCID: PMC10825935 DOI: 10.1039/d3na01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
To achieve a high quantum yield (QY) of nanomaterials suitable for optical applications, we improved the optical properties of AgIn5S8 (AIS) quantum dots (QDs) by employing an alloyed-core/inner-shell/outer-shell (ZAIS/ZIS/ZnS) structure. We also investigated the mechanism of optical transitions to clarify the improvement of QYs. In AIS, the low-energy absorption near the band edge region is attributed to the weakly allowed band gap transition, which gains oscillator strength through state intermixing and electron-phonon coupling. The main photoluminescence is also ascribed to the weakly allowed band gap transition with characteristics of self-trapped excitonic emission. With alloying/shelling processes, the weakly allowed transition is enhanced by the evolution of the electronic structures in the alloyed core, which improves the band gap emission. In shelled structures, the nonradiative process is reduced by the reconstructed lattice and passivated surface, ultimately leading to a high QY of 85% in ZAIS/ZIS/ZnS. These findings provide new insights into the optical transitions of AIS because they challenge previous conclusions. In addition, our work elucidates the mechanism behind the enhancement of QY accomplished through alloying/shelling processes, providing strategies to optimize nontoxic QDs for various applications using a green chemistry approach.
Collapse
Affiliation(s)
- Seonghyun Jeong
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Minji Ko
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Sangwon Nam
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Jun Hwan Oh
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Seung Min Park
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Jae Kyu Song
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| |
Collapse
|
3
|
Mi Y, Jiang A, Kong L, Wang J, Guo H, Luo SN. Amplified Spontaneous Emission and Lasing from Zn-Processed AgIn 5S 8 Core/Shell Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19330-19336. [PMID: 37018469 DOI: 10.1021/acsami.2c21648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
I-III-VI ternary quantum dots (QDs) have emerged as favorable alternatives to the toxic II-VI QDs for optoelectronic and biological applications. However, their use as optical gain media for microlasers is still limited by a low fluorescence efficiency. Here, we demonstrate amplified spontaneous emission (ASE) and lasing from colloidal QDs of Zn-processed AgIn5S8 (AIS) for the first time. The passivation treatment on the AIS QDs yields a 3.4-fold enhancement of fluorescence quantum efficiency and a 30% increase in the two-photon absorption cross section. ASE is achieved from the AIS/ZnS core/shell QD films under both one- and two-photon pumping with a threshold fluence of ∼84.5 μJ/cm2 and 3.1 mJ/cm2, respectively. These thresholds are comparable to the best optical gain performance of Cd based-QDs reported in the literature. Moreover, we demonstrate a facile whispering-gallery-mode microlaser of the core/shell QDs with a lasing threshold of ∼233 μJ/cm2. The passivated AIS QDs can be promising optical gain media for photonic applications.
Collapse
Affiliation(s)
- Yang Mi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Anqiang Jiang
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Lei Kong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jun Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Heng Guo
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Sheng-Nian Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
4
|
Olejniczak A, Rich R, Gryczynski Z, Cichy B. Non-excitonic defect-assisted radiative transitions are responsible for new D-type blinking in ternary quantum dots. NANOSCALE HORIZONS 2021; 7:63-76. [PMID: 34792059 DOI: 10.1039/d1nh00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work addresses the issue of dark states formation in QDs by cooperative excitonic and intrinsic defect-assisted radiative transitions. Here we refer to the observed blinking as D-type to distinguish it from purely excitonic types. It is shown experimentally that defect-assisted radiative relaxations in a single I-III-VI QD result in atypical blinking characteristics that cannot be explained on the basis of charged exciton models. In addition to the excitonic channel, it has been proposed that defect-assisted kinetics can also form blinking patterns. Two conditions for the formation of dark states have been identified which are related to correlation and competition when considering photons emitted from bright defects. Two transition schemes have therefore been proposed. The first transition scheme includes time-correlated trapping of more than one electron at a single trap centre. This is used to simulate variations in the defect's charge state and switching between radiative/nonradiative transitions. The latter scheme, on the other hand, involves uncorrelated trapping and radiative relaxations from two different types of defects (competition). Both schemes are seen to play an equal role in radiative processes in I-III-VI QDs. Considered together, the proposed models can reflect the experimental data with very good accuracy, providing a better understanding of the underlying physics. An important implication of these schemes is that dark states formation doesn't have to be limited to mechanisms that involve charged excitons, and it may also be observed for independent defect assisted kinetics. This is especially valid for highly defected or multinary QDs.
Collapse
Affiliation(s)
- Adam Olejniczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Ryan Rich
- Department of Mathematics, Computer Science and Physics, Texas Wesleyan University, 1201 Wesleyan Street, Fort Worth, TX 76105, USA
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA
| | - Bartłomiej Cichy
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| |
Collapse
|
5
|
Bhavani P, Praveen Kumar D, Putta Rangappa A, Hong Y, Gopannagari M, Amaranatha Reddy D, Kyu Kim T. Skeletal Cu
7
S
4
Nanocages Wrapped by Few‐Layered Black Phosphorus Nanosheets as an Efficient H
2
Production Photocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- P. Bhavani
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - D. Praveen Kumar
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - A. Putta Rangappa
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Yul Hong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | | | - D. Amaranatha Reddy
- Department of Sciences Indian Institute of Information Technology Design and Manufacturing Kurnool Andhra Pradesh 581007 India
| | - Tae Kyu Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
6
|
Yarema O, Perevedentsev A, Ovuka V, Baade P, Volk S, Wood V, Yarema M. Colloidal Phase-Change Materials: Synthesis of Monodisperse GeTe Nanoparticles and Quantification of Their Size-Dependent Crystallization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:6134-6143. [PMID: 30270986 DOI: 10.1021/acs.chemmater.7b04710] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/19/2018] [Indexed: 05/28/2023]
Abstract
Phase-change memory materials refer to a class of materials that can exist in amorphous and crystalline phases with distinctly different electrical or optical properties, as well as exhibit outstanding crystallization kinetics and optimal phase transition temperatures. This paper focuses on the potential of colloids as phase-change memory materials. We report a novel synthesis for amorphous GeTe nanoparticles based on an amide-promoted approach that enables accurate size control of GeTe nanoparticles between 4 and 9 nm, narrow size distributions down to 9-10%, and synthesis upscaling to reach multigram chemical yields per batch. We then quantify the crystallization phase transition for GeTe nanoparticles, employing high-temperature X-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. We show that GeTe nanoparticles crystallize at higher temperatures than the bulk GeTe material and that crystallization temperature increases with decreasing size. We can explain this size-dependence using the entropy of crystallization model and classical nucleation theory. The size-dependences quantified here highlight possible benefits of nanoparticles for phase-change memory applications.
Collapse
Affiliation(s)
- Olesya Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Aleksandr Perevedentsev
- Polymer Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Vladimir Ovuka
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Paul Baade
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Sebastian Volk
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Vanessa Wood
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Maksym Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Nanoparticles of Ag-In-S and Cu-In-S in Aqueous Media: Preparation, Spectral and Luminescent Properties. THEOR EXP CHEM+ 2017. [DOI: 10.1007/s11237-017-9533-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|