1
|
Roldan L, Rodríguez-Santiago L, Didier-Marechal J, Sodupe M. Exploring the Esterase Catalytic Activity of Minimalist Heptapeptide Amyloid Fibers. Chemistry 2024; 30:e202401797. [PMID: 38973291 DOI: 10.1002/chem.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This paper investigates the esterase activity of minimalist amyloid fibers composed of short seven-residue peptides, IHIHIHI (IH7) and IHIHIQI (IH7Q), with a particular focus on the role of the sixth residue position within the peptide sequence. Through computational simulations and analyses, we explore the molecular mechanisms underlying catalysis in these amyloid-based enzymes. Contrary to initial hypotheses, our study reveals that the twist angle of the fiber, and thus the catalytic site's environment, is not notably affected by the sixth residue. Instead, the sixth residue interacts with the p-nitrophenylacetate (pNPA) substrate, particularly through its -NO2 group, potentially enhancing catalysis. Quantum mechanics/molecular mechanics (QM/MM) simulations of the reaction mechanism suggest that the polarizing effect of glutamine enhances catalytic activity by forming a stabilizing network of hydrogen bonds with pNPA, leading to lower energy barriers and a more exergonic reaction. Our findings provide valuable insights into the intricate interplay between peptide sequence, structural arrangement, and catalytic function in amyloid-based enzymes, offering potentially valuable information for the design and optimization of biomimetic catalysts.
Collapse
Affiliation(s)
- L Roldan
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - L Rodríguez-Santiago
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - J Didier-Marechal
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - M Sodupe
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
2
|
Esposito A, Leone L, De Simone A, Fusco G, Nastri F, Lombardi A. Catalytic Nanomaterials by Conjugation of an Artificial Heme-Peroxidase to Amyloid Fibrils. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45371-45382. [PMID: 39140178 DOI: 10.1021/acsami.4c10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The self-assembly of proteins and peptides into fibrillar amyloid aggregates is a highly promising route to define the next generation of functional nanomaterials. Amyloid fibrils, traditionally associated with neurodegenerative diseases, offer exceptional conformational and chemical stability and mechanical properties, and resistance to degradation. Here, we report the development of catalytic amyloid nanomaterials through the conjugation of a miniaturized artificial peroxidase (FeMC6*a) to a self-assembling amyloidogenic peptide derived from human transthyretin, TTR(105-115), whose sequence is YTIAALLSPYS. Our synthetic approach relies on fast and selective click ligation upon proper modification of both the peptide and FeMC6*a, leading to TTRLys108@FeMC6*a. Mixing unmodified TTR(105-115) with TTRLys108@FeMC6*a allowed the generation of enzyme-loaded amyloid fibrils, namely, FeMC6*a@fibrils. Catalytic studies, performed in aqueous solution at nearly neutral pH, using ABTS as a model substrate and H2O2 as the oxidizing agent revealed that the enzyme retains its catalytic activity. Moreover, the activity was found to depend on the TTRLys108@FeMC6*a/unmodified TTR(105-115) peptide ratio. In particular, those with the 2:100 ratio showed the highest activity in terms of initial rates and substrate conversion among the screened nanoconjugates and compared to the freely diffusing enzyme. Finally, the newly developed nanomaterials were integrated into a flow system based on a polyvinylidene difluoride membrane filter. Within this flow-reactor, multiple reaction cycles were performed, showcasing the reusability and stability of the catalytic amyloids over extended periods, thus offering significantly improved characteristics compared to the isolated FeMC6*a in the application to a number of practical scenarios.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuliana Fusco
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| |
Collapse
|
3
|
Dürvanger Z, Bencs F, Menyhárd DK, Horváth D, Perczel A. Solvent induced amyloid polymorphism and the uncovering of the elusive class 3 amyloid topology. Commun Biol 2024; 7:968. [PMID: 39122990 PMCID: PMC11316126 DOI: 10.1038/s42003-024-06621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Aggregation-prone-motifs (APRs) of proteins are short segments, which - as isolated peptides - form diverse amyloid-like crystals. We introduce two APRs - designed variants of the incretin mimetic Exendin-4 - that both display crystal-phase polymorphism. Crystallographic and spectroscopic analysis revealed that a single amino-acid substitution can greatly reduce topological variability: while LYIQWL can form both parallel and anti-parallel β-sheets, LYIQNL selects only the former. We also found that the parallel/anti-parallel switch of LYIQWL can be induced by simply changing the crystallization temperature. One crystal form of LYIQNL was found to belong to the class 3 topology, an arrangement previously not encountered among proteinogenic systems. We also show that subtle environmental changes lead to crystalline assemblies with different topologies, but similar interfaces. Spectroscopic measurements showed that polymorphism is already apparent in the solution state. Our results suggest that the temperature-, sequence- and environmental sensitivity of physiological amyloids is reflected in assemblies of the APR segments, which, complete with the new class 3 crystal form, effectively sample all the originally proposed basic topologies of amyloid-like aggregates.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Fruzsina Bencs
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
| |
Collapse
|
4
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
5
|
Florio D, Luciano P, Di Natale C, Marasco D. The effects of histidine substitution of aromatic residues on the amyloidogenic properties of the fragment 264-277 of nucleophosmin 1. Bioorg Chem 2024; 147:107404. [PMID: 38678777 DOI: 10.1016/j.bioorg.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo Luciano
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
6
|
Yang Y, Wang X, Wu X, Guo S, Yang H, Lu J, Dong H. Computation-Driven Rational Design of Self-Assembled Short Peptides for Catalytic Hydrogen Production. J Am Chem Soc 2024; 146:13488-13498. [PMID: 38709095 DOI: 10.1021/jacs.4c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xialian Wu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuyi Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Haokun Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Junxia Lu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
8
|
Baghel D, de Oliveira AP, Satyarthy S, Chase WE, Banerjee S, Ghosh A. Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy. Methods Enzymol 2024; 697:113-150. [PMID: 38816120 PMCID: PMC11147165 DOI: 10.1016/bs.mie.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The self-assembly of proteins and peptides into ordered structures called amyloid fibrils is a hallmark of numerous diseases, impacting the brain, heart, and other organs. The structure of amyloid aggregates is central to their function and thus has been extensively studied. However, the structural heterogeneities between aggregates as they evolve throughout the aggregation pathway are still not well understood. Conventional biophysical spectroscopic methods are bulk techniques and only report on the average structural parameters. Understanding the structure of individual aggregate species in a heterogeneous ensemble necessitates spatial resolution on the length scale of the aggregates. Recent technological advances have led to augmentation of infrared (IR) spectroscopy with imaging modalities, wherein the photothermal response of the sample upon vibrational excitation is leveraged to provide spatial resolution beyond the diffraction limit. These combined approaches are ideally suited to map out the structural heterogeneity of amyloid ensembles. AFM-IR, which integrates IR spectroscopy with atomic force microscopy enables identification of the structural facets the oligomers and fibrils at individual aggregate level with nanoscale resolution. These capabilities can be extended to chemical mapping in diseased tissue specimens with submicron resolution using optical photothermal microscopy, which combines IR spectroscopy with optical imaging. This book chapter provides the basic premise of these novel techniques and provides the typical methodology for using these approaches for amyloid structure determination. Detailed procedures pertaining to sample preparation and data acquisition and analysis are discussed and the aggregation of the amyloid β peptide is provided as a case study to provide the reader the experimental parameters necessary to use these techniques to complement their research efforts.
Collapse
Affiliation(s)
- Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ana Pacheco de Oliveira
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Saumya Satyarthy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - William E Chase
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
9
|
Yang Y, Wang X, Dong H. Simulating chemical reactions promoted by self-assembled peptides with catalytic properties. Methods Enzymol 2024; 697:321-343. [PMID: 38816128 DOI: 10.1016/bs.mie.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptides that self-assemble exhibit distinct three-dimensional structures and attributes, positioning them as promising candidates for biocatalysts. Exploring their catalytic processes enhances our comprehension of the catalytic actions inherent to self-assembling peptides, laying a theoretical foundation for creating novel biocatalysts. The investigation into the intricate reaction mechanisms of these entities is rendered challenging due to the vast variability in peptide sequences, their aggregated formations, supportive elements, structures of active sites, types of catalytic reactions, and the interplay between these variables. This complexity hampers the elucidation of the linkage between sequence, structure, and catalytic efficiency in self-assembling peptide catalysts. This chapter delves into the latest progress in understanding the mechanisms behind peptide self-assembly, serving as a catalyst in hydrolysis and oxidation reactions, and employing computational analyses. It discusses the establishment of models, selection of computational strategies, and analysis of computational procedures, emphasizing the application of modeling techniques in probing the catalytic mechanisms of peptide self-assemblies. It also looks ahead to the potential future trajectories within this research domain. Despite facing numerous obstacles, a thorough investigation into the structural and catalytic mechanisms of peptide self-assemblies, combined with the ongoing advancement in computational simulations and experimental methodologies, is set to offer valuable theoretical insights for the development of new biocatalysts, thereby significantly advancing the biocatalysis field.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute for Brain Sciences, Nanjing University, Nanjing, P.R. China.
| |
Collapse
|
10
|
Carrillo D, Duran-Meza E, Castillo-Caceres C, Alarcon DE, Guzman H, Diaz-Espinoza R. Catalytic amyloids for nucleotide hydrolysis. Methods Enzymol 2024; 697:269-291. [PMID: 38816126 DOI: 10.1016/bs.mie.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.
Collapse
Affiliation(s)
- Daniel Carrillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Diego Eduardo Alarcon
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Hardy Guzman
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
11
|
Garcia-Pardo J, Fornt-Suñé M, Ventura S. Assembly and catalytic activity of short prion-inspired peptides. Methods Enzymol 2024; 697:499-526. [PMID: 38816134 DOI: 10.1016/bs.mie.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Enzymes play a crucial role in biochemical reactions, but their inherent structural instability limits their performance in industrial processes. In contrast, amyloid structures, known for their exceptional stability, are emerging as promising candidates for synthetic catalysis. This article explores the development of metal-decorated nanozymes formed by short peptides, inspired by prion-like domains. We detail the rational design of synthetic short Tyrosine-rich peptide sequences, focusing on their self-assembly into stable amyloid structures and their metallization with biologically relevant divalent metal cations, such as Cu2+, Ni2+, Co2+ and Zn2+. The provided experimental framework offers a step-by-step guide for researchers interested in exploring the catalytic potential of metal-decorated peptides. By bridging the gap between amyloid structures and catalytic function, these hybrid molecules open new avenues for developing novel metalloenzymes with potential applications in diverse chemical reactions.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Marc Fornt-Suñé
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Pan T, Wang Y, Zhang C. A method for in situ self-assembly of the catalytic peptide in enzymatic compartments of glucan particles. Methods Enzymol 2024; 697:247-268. [PMID: 38816125 DOI: 10.1016/bs.mie.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Drawing inspiration from cellular compartmentalization, enzymatic compartments play a pivotal role in bringing enzymes and substrates into confined environments, offering heightened catalytic efficiency and prolonged enzyme lifespan. Previously, we engineered bioinspired enzymatic compartments, denoted as TPE-Q18H@GPs, achieved through the spatiotemporally controllable self-assembly of the catalytic peptide TPE-Q18H within hollow porous glucan particles (GPs). This design strategy allows substrates and products to freely traverse, while retaining enzymatic aggregations. The confined environment led to the formation of catalytic nanofibers, resulting in enhanced substrate binding affinity and a more than two-fold increase in the second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in a dispersed system. In this work, we will introduce how to synthesize the above-mentioned enzymatic compartments using salt-responsive catalytic peptides and GPs.
Collapse
Affiliation(s)
- Tiezheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
13
|
Tiwari OS, Gazit E. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods Enzymol 2024; 697:181-209. [PMID: 38816123 DOI: 10.1016/bs.mie.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
While enzymes are potentially useful in various applications, their limited operational stability and production costs have led to an extensive search for stable catalytic agents that will retain the efficiency, specificity, and environmental-friendliness of natural enzymes. Despite extensive efforts, there is still an unmet need for improved enzyme mimics and novel concepts to discover and optimize such agents. Inspired by the catalytic activity of amyloids and the formation of amyloid-like assemblies by metabolites, our group pioneered the development of novel metabolite-metal co-assemblies (bio-nanozymes) that produce nanomaterials mimicking the catalytic function of common metalloenzymes that are being used for various technological applications. In addition to their notable activity, bio-nanozymes are remarkably safe as they are purely composed of amino acids and minerals that are harmless to the environment. The bio-nanozymes exhibit high efficiency and exceptional robustness, even under extreme conditions of temperature, pH, and salinity that are impractical for enzymes. Our group has recently also demonstrated the formation of ordered amino acid co-assemblies showing selective and preferential interactions comparable to the organization of residues in folded proteins. The identified bio-nanozymes can be used in various applications including environmental remediation, synthesis of new materials, and green energy.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Bahrami F, Zhao Y. Carbonic anhydrase mimics with rationally designed active sites for fine-tuned catalytic activity and selectivity in ester hydrolysis. Catal Sci Technol 2023; 13:5702-5709. [PMID: 38013842 PMCID: PMC10544069 DOI: 10.1039/d3cy00704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
Numerous hydrolytic enzymes utilize zinc as a cofactor for catalysis. We here report water-soluble polymeric nanoparticles with zinc ions in active sites and a nearby base as a mimic of carbonic anhydrase (CA). Their pKa of 6.3-6.4 for zinc-bound water is lower than the 6.8-7.3 value for natural enzymes, which allows the catalyst to hydrolyze nonactivated alkyl esters under neutral conditions-a long sought-after goal for artificial esterases. The size and shape of the active site can be rationally tuned through a template used in molecular imprinting. Subtle structural changes in the template, including shifting an ethyl group by one C-N bond and removal of a methylene group, correlate directly with catalytic activity. A catalyst can be made to be highly specific or have broad substrate specificity through modular synthesis of templates.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| |
Collapse
|
15
|
Navarro S, Díaz-Caballero M, Peccati F, Roldán-Martín L, Sodupe M, Ventura S. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes. ACS NANO 2023; 17:16968-16979. [PMID: 37647583 PMCID: PMC10510724 DOI: 10.1021/acsnano.3c04164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Enzymes typically fold into defined 3D protein structures exhibiting a high catalytic efficiency and selectivity. It has been proposed that the earliest enzymes may have arisen from the self-assembly of short peptides into supramolecular amyloid-like structures. Several artificial amyloids have been shown to display catalytic activity while offering advantages over natural enzymes in terms of modularity, flexibility, stability, and reusability. Hydrolases, especially esterases, are the most common artificial amyloid-like nanozymes with some reported to act as carbonic anhydrases (CA). Their hydrolytic activity is often dependent on the binding of metallic cofactors through a coordination triad composed of His residues in the β-strands, which mimic the arrangement found in natural metalloenzymes. Tyr residues contribute to the coordination of metal ions in the active center of metalloproteins; however, their use has been mostly neglected in the design of metal-containing amyloid-based nanozymes. We recently reported that four different polar prion-inspired heptapeptides spontaneously self-assembled into amyloid fibrils. Their sequences lack His but contain three alternate Tyr residues exposed to solvent. We combine experiments and simulations to demonstrate that the amyloid fibrils formed by these peptides can efficiently coordinate and retain different divalent metal cations, functioning as both metal scavengers and nanozymes. The metallized fibrils exhibit esterase and CA activities without the need for a histidine triad. These findings highlight the functional versatility of prion-inspired peptide assemblies and provide a new sequential context for the creation of artificial metalloenzymes. Furthermore, our data support amyloid-like structures acting as ancestral catalysts at the origin of life.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Marta Díaz-Caballero
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Francesca Peccati
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), 48160 Derio, Spain
| | - Lorena Roldán-Martín
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Mariona Sodupe
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
16
|
Horvath I, Mohamed KA, Kumar R, Wittung-Stafshede P. Amyloids of α-Synuclein Promote Chemical Transformations of Neuronal Cell Metabolites. Int J Mol Sci 2023; 24:12849. [PMID: 37629028 PMCID: PMC10454467 DOI: 10.3390/ijms241612849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The assembly of α-synuclein into cross-β structured amyloid fibers results in Lewy body deposits and neuronal degeneration in Parkinson's disease patients. As the cell environment is highly crowded, interactions between the formed amyloid fibers and a range of biomolecules can occur in cells. Although amyloid fibers are considered chemically inert species, recent in vitro work using model substrates has shown α-synuclein amyloids, but not monomers, to catalyze the hydrolysis of ester and phosphoester bonds. To search for putative catalytic activity of α-synuclein amyloids on biologically relevant metabolites, we here incubated α-synuclein amyloids with neuronal SH-SY5Y cell lysates devoid of proteins. LC-MS-based metabolomic (principal component and univariate) analysis unraveled distinct changes in several metabolite levels upon amyloid (but not monomer) incubation. Of 63 metabolites identified, the amounts of four increased (3-hydroxycapric acid, 2-pyrocatechuic acid, adenosine, and NAD), and the amounts of seventeen decreased (including aromatic and apolar amino acids, metabolites in the TCA cycle, keto acids) in the presence of α-synuclein amyloids. Many of these metabolite changes match what has been reported previously in Parkinson's disease patients and animal-model metabolomics studies. Chemical reactivity of α-synuclein amyloids may be a new gain-of-function that alters the metabolite composition in cells and, thereby, modulates disease progression.
Collapse
|
17
|
Li Z, Joshi SY, Wang Y, Deshmukh SA, Matson JB. Supramolecular Peptide Nanostructures Regulate Catalytic Efficiency and Selectivity. Angew Chem Int Ed Engl 2023; 62:e202303755. [PMID: 37194941 PMCID: PMC10330506 DOI: 10.1002/anie.202303755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/18/2023]
Abstract
We report three constitutionally isomeric tetrapeptides, each comprising one glutamic acid (E) residue, one histidine (H) residue, and two lysine (KS ) residues functionalized with side-chain hydrophobic S-aroylthiooxime (SATO) groups. Depending on the order of amino acids, these amphiphilic peptides self-assembled in aqueous solution into different nanostructures:nanoribbons, a mixture of nanotoroids and nanoribbons, or nanocoils. Each nanostructure catalyzed hydrolysis of a model substrate, with the nanocoils exhibiting the greatest rate enhancement and the highest enzymatic efficiency. Coarse-grained molecular dynamics simulations, analyzed with unsupervised machine learning, revealed clusters of H residues in hydrophobic pockets along the outer edge of the nanocoils, providing insight for the observed catalytic rate enhancement. Finally, all three supramolecular nanostructures catalyzed hydrolysis of the l-substrate only when a pair of enantiomeric Boc-l/d-Phe-ONp substrates were tested. This study highlights how subtle molecular-level changes can influence supramolecular nanostructures, and ultimately affect catalytic efficiency.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - John B Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| |
Collapse
|
18
|
Janković P, Otović E, Mauša G, Kalafatovic D. Manually curated dataset of catalytic peptides for ester hydrolysis. Data Brief 2023; 48:109290. [PMID: 37383747 PMCID: PMC10294096 DOI: 10.1016/j.dib.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Catalytic peptides are low cost biomolecules able to catalyse chemical reactions such as ester hydrolysis. This dataset provides a list of catalytic peptides currently reported in literature. Several parameters were evaluated, including sequence length, composition, net charge, isoelectric point, hydrophobicity, self-assembly propensity and mechanism of catalysis. Along with the analysis of physico-chemical properties, the SMILES representation for each sequence was generated to provide an easy-to-use means of training machine learning models. This offers a unique opportunity for the development and validation of proof-of-concept predictive models. Being a reliable manually curated dataset, it also enables the benchmark for comparison of new models or models trained on automatically gathered peptide-oriented datasets. Moreover, the dataset provides an insight in the currently developed catalytic mechanisms and can be used as the foundation for the development of next-generation peptide-based catalysts.
Collapse
Affiliation(s)
- Patrizia Janković
- University of Rijeka, Department of Biotechnology, Rijeka 51000, Croatia
| | - Erik Otović
- University of Rijeka, Faculty of Engineering, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| | - Goran Mauša
- University of Rijeka, Faculty of Engineering, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| | - Daniela Kalafatovic
- University of Rijeka, Department of Biotechnology, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| |
Collapse
|
19
|
Luo W, Homma C, Hayamizu Y. Rational Design and Self-Assembly of Histidine-Rich Peptides on a Graphite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7057-7062. [PMID: 37171391 DOI: 10.1021/acs.langmuir.3c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Histidine-rich peptides (HRPs) have been investigated to create functional biomolecules based on the nature of histidine, such as ion binding and catalytic activity. The organization of these HRPs on a solid surface can lead to surface functionalization with the well-known properties of HRPs. However, immobilization of HRPs on the surface has not been realized. Here, we design a series of octapeptides with histidine repeat units, aiming to establish their self-assembly on a graphite surface to produce a highly robust and active nanoscaffold. The new design has (XH)4, and we incorporated various types of hydrophobic amino acids at X in the sequence to facilitate their interaction with the surface. The effect of the pair of amino acids on their self-assembly was investigated by atomic force microscopy. Contact angle measurement revealed that these assemblies functionalized graphite surfaces with different wetting chemistry. Moreover, the secondary structure of peptides was characterized by Fourier transform infrared spectroscopy (FTIR), which gives us further insights into the conformation of histidine repeat peptides on the surface. Our results showed a new approach to applying histidine-rich peptides on the surface and tuning the self-assembly behavior by introducing different counter amino acids that could be integrated with a wide range of biosensing and biotechnology applications.
Collapse
Affiliation(s)
- Wei Luo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Heerde T, Bansal A, Schmidt M, Fändrich M. Cryo-EM structure of a catalytic amyloid fibril. Sci Rep 2023; 13:4070. [PMID: 36906667 PMCID: PMC10008563 DOI: 10.1038/s41598-023-30711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Catalytic amyloid fibrils are novel types of bioinspired, functional materials that combine the chemical and mechanical robustness of amyloids with the ability to catalyze a certain chemical reaction. In this study we used cryo-electron microcopy to analyze the amyloid fibril structure and the catalytic center of amyloid fibrils that hydrolyze ester bonds. Our findings show that catalytic amyloid fibrils are polymorphic and consist of similarly structured, zipper-like building blocks that consist of mated cross-β sheets. These building blocks define the fibril core, which is decorated by a peripheral leaflet of peptide molecules. The observed structural arrangement differs from previously described catalytic amyloid fibrils and yielded a new model of the catalytic center.
Collapse
Affiliation(s)
- Thomas Heerde
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Akanksha Bansal
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
21
|
Yang L, Zhang J, Wang M, Wang Y, Qi W, He Z. Probing the effect of microenvironment on the enzyme-like behavior of catalytic peptide assemblies. J Colloid Interface Sci 2023; 629:683-693. [PMID: 36183647 DOI: 10.1016/j.jcis.2022.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure-function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; School of Life Sciences. Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
22
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
23
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
24
|
Diaz-Espinoza R. Catalytically Active Amyloids as Future Bionanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3802. [PMID: 36364578 PMCID: PMC9656882 DOI: 10.3390/nano12213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Peptides and proteins can aggregate into highly ordered and structured conformations called amyloids. These supramolecular structures generally have convergent features, such as the formation of intermolecular beta sheets, that lead to fibrillary architectures. The resulting fibrils have unique mechanical properties that can be exploited to develop novel nanomaterials. In recent years, sequences of small peptides have been rationally designed to self-assemble into amyloids that catalyze several chemical reactions. These amyloids exhibit reactive surfaces that can mimic the active sites of enzymes. In this review, I provide a state-of-the-art summary of the development of catalytically active amyloids. I will focus especially on catalytic activities mediated by hydrolysis, which are the most studied examples to date, as well as novel types of recently reported activities that promise to expand the possible repertoires. The combination of mechanical properties with catalytic activity in an amyloid scaffold has great potential for the development of future bionanomaterials aimed at specific applications.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 3363, Chile
| |
Collapse
|
25
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Arad E, Jelinek R. Catalytic amyloids. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Bioinspired enzymatic compartments constructed by spatiotemporally confined in situ self-assembly of catalytic peptide. Commun Chem 2022; 5:81. [PMID: 36697908 PMCID: PMC9814850 DOI: 10.1038/s42004-022-00700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
Enzymatic compartments, inspired by cell compartmentalization, which bring enzymes and substrates together in confined environments, are of particular interest in ensuring the enhanced catalytic efficiency and increased lifetime of encapsulated enzymes. Herein, we constructed bioinspired enzymatic compartments (TPE-Q18H@GPs) with semi-permeability by spatiotemporally controllable self-assembly of catalytic peptide TPE-Q18H in hollow porous glucan particles (GPs), allowing substrates and products to pass in/out freely, while enzymatic aggregations were retained. Due to the enrichment of substrates and synergistic effect of catalytic nanofibers formed in the confined environment, the enzymatic compartments exhibited stronger substrate binding affinity and over two-fold enhancement of second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in disperse system. Moreover, GPs enabled the compartments sufficient stability against perturbation conditions, such as high temperature and degradation. This work opens an intriguing avenue to construct enzymatic compartments using porous biomass materials and has fundamental implications for constructing artificial organelles and even artificial cells.
Collapse
|
31
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
32
|
Zhang Y, Tian X, Li X. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling. J Mater Chem B 2022; 10:3716-3722. [PMID: 35451448 DOI: 10.1039/d2tb00375a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulating enzyme activities or functionalities is one of the primary features of biological systems, which is, however, a great challenge for artificial enzyme systems. In this work, we designed and synthesized a series of self-assembling peptides from histidine and other amino acids (Asp, Ser, Lys or Arg), which exist in the active site of natural enzymes. These peptides could undergo a conformational transition from random coils to β-sheet structures under physiological conditions and formed self-assembled nanotubes with obvious hydrolase activities. After incorporation of transition metal ions such as Cu2+, these peptides could coordinate with Cu2+ ions, switch molecular conformations, and self-assemble into hybrid nanomaterials with altered morphologies and peroxidase-like activities. This work illustrates a facile approach for constructing artificial enzymes from self-assembling peptides with histidine residues whose catalytic functions could be modulated by incorporation of Cu2+ ions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
33
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
34
|
Klose D, Vemulapalli SPB, Richman M, Rudnick S, Aisha V, Abayev M, Chemerovski M, Shviro M, Zitoun D, Majer K, Wili N, Goobes G, Griesinger C, Jeschke G, Rahimipour S. Cu 2+-Induced self-assembly and amyloid formation of a cyclic D,L-α-peptide: structure and function. Phys Chem Chem Phys 2022; 24:6699-6715. [PMID: 35234757 DOI: 10.1039/d1cp05415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including β-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-β-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Sahithya Phani Babu Vemulapalli
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Safra Rudnick
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vered Aisha
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Abayev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Marina Chemerovski
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Shviro
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Zitoun
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Katharina Majer
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Nino Wili
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gil Goobes
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
35
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
36
|
Gülseren G. Catalytic, theoretical, and biological investigation of an enzyme mimic model. Turk J Chem 2021; 45:1270-1278. [PMID: 34707450 PMCID: PMC8517613 DOI: 10.3906/kim-2104-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
Artificial catalyst studies were always stayed at the kinetics investigation level, in this work bioactivity of designed catalyst were shown by the induction of biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications. The development of artificial enzymes is a continuous quest for the development of tailored catalysts with improved activity and stability. Understanding the catalytic mechanism is a replaceable step for catalytic studies and artificial enzyme mimics provide an alternative way for catalysis and a better understanding of catalytic pathways at the same time. Here we designed an artificial catalyst model by decorating peptide nanofibers with a covalently conjugated catalytic triad sequence. Owing to the self-assembling nature of the peptide amphiphiles, multiple action units can be presented on the surface for enhanced catalytic performance. The designed catalyst has shown an enzyme-like kinetics profile with a significant substrate affinity. The cooperative action in between catalytic triad amino acids has shown improved catalytic activity in comparison to only the histidine-containing control group. Histidine is an irreplaceable contributor to catalytic action and this is an additional reason for control group selection. This new method based on the self-assembly of covalently conjugated action units offers a new platform for enzyme investigations and their further applications. Artificial catalyst studies always stayed at the kinetics investigation level, in this work bioactivity of the designed catalyst was shown by the induction of biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications.
Collapse
Affiliation(s)
- Gülcihan Gülseren
- Department of Molecular Biology and Genetics, Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture University Turkey
| |
Collapse
|
37
|
Marshall LR, Korendovych IV. Catalytic amyloids: Is misfolding folding? Curr Opin Chem Biol 2021; 64:145-153. [PMID: 34425319 PMCID: PMC8585703 DOI: 10.1016/j.cbpa.2021.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Originally regarded as a disease symptom, amyloids have shown a rich diversity of functions, including biologically beneficial ones. As such, the traditional view of polypeptide aggregation into amyloid-like structures being 'misfolding' should rather be viewed as 'alternative folding.' Various amyloid folds have been recently used to create highly efficient catalysts with specific catalytic efficiencies rivaling those of enzymes. Here we summarize recent developments and applications of catalytic amyloids, derived from both de novo and bioinspired designs, and discuss how progress in the last 2 years reflects on the field as a whole.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
38
|
Gülseren G, Saylam A, Marion A, Özçubukçu S. Fullerene-Based Mimics of Biocatalysts Show Remarkable Activity and Modularity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45854-45863. [PMID: 34520162 DOI: 10.1021/acsami.1c11516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of catalysts with greater control over catalytic activity and stability is a major challenge with substantial impact on fundamental chemistry and industrial applications. Due to their unparalleled diversity, selectivity, and efficiency, enzymes are promising models for next-generation catalysts, and considerable efforts have been devoted to incorporating the principles of their mechanisms of action into artificial systems. We report a heretofore undocumented catalyst design that introduces fullerenes to the field of biocatalysis, which we refer to as fullerene nanocatalysts, and that emulates enzymatic active sites through multifunctional self-assembled nanostructures. As a proof-of-concept, we mimicked the reactivity of hydrolases using fullerene nanocatalysts functionalized with the basic components of the parent enzyme with remarkable activity. Owing to the versatile amino acid-based functionalization repertoire of fullerene nanocatalysts, these next-generation carbon/biomolecule hybrids have potential to mimic the activity of other families of enzymes and, therefore, offer new perspectives for the design of biocompatible, high-efficiency artificial nanocatalysts.
Collapse
Affiliation(s)
- Gülcihan Gülseren
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya 42080, Turkey
| | - Aytül Saylam
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
39
|
Duran-Meza E, Diaz-Espinoza R. Catalytic Amyloids as Novel Synthetic Hydrolases. Int J Mol Sci 2021; 22:ijms22179166. [PMID: 34502074 PMCID: PMC8431744 DOI: 10.3390/ijms22179166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer’s and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.
Collapse
Affiliation(s)
- Eva Duran-Meza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Correspondence:
| |
Collapse
|
40
|
Singh A, Joseph JP, Gupta D, Miglani C, Mavlankar NA, Pal A. Photothermally switchable peptide nanostructures towards modulating catalytic hydrolase activity. NANOSCALE 2021; 13:13401-13409. [PMID: 34477745 DOI: 10.1039/d1nr03655f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymes are the most efficient catalysts in nature that possess an impressive range of catalytic activities, albeit limited by stability in adverse conditions. Functional peptides have emerged as alternative robust biocatalysts to mimic complex enzymes. Here, a rational design of minimalistic amyloid-inspired peptides 1-2 is demonstrated, which leads to pathway-driven self-assembly triggered by heat, light and chemical cues to render 1D and 2D nanostructures by the interplay of hydrogen bonding, host-guest interaction and reversible photodimerization. Such in situ transformable peptide nanostructures by means of external cues are envisaged as a catalytic amyloid for the first time to mimic the hydrolase enzyme activity. Michaelis Menten's enzyme kinetic parameters for the hydrolysis rate correlate the external cue-mediated structure-function augmentation with the twisted bundles, 1TB being the most efficient biocatalyst among all the dimensionally diverse nanostructures. Unlike the natural enzyme, the peptide nanostructures exhibited the robust nature of the hydrolase activity over a broad range of temperature and pH. Finally, the peptide nanostructures are explored as efficient heterogeneous flow catalysts to improve the turnover number for the hydrolase activity.
Collapse
Affiliation(s)
- Ashmeet Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | | | | | | | | | | |
Collapse
|
41
|
Pal S, Goswami S, Das D. Cross β amyloid assemblies as complex catalytic machinery. Chem Commun (Camb) 2021; 57:7597-7609. [PMID: 34278403 DOI: 10.1039/d1cc02880d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
How modern enzymes evolved as complex catalytic machineries to facilitate diverse chemical transformations is an open question for the emerging field of systems chemistry. Inspired by Nature's ingenuity in creating complex catalytic structures for exotic functions, short peptide-based cross β amyloid sequences have been shown to access intricate binding surfaces demonstrating the traits of extant enzymes and proteins. Based on their catalytic proficiencies reported recently, these amyloid assemblies have been argued as the earliest protein folds. Herein, we map out the recent progress made by our laboratory and other research groups that demonstrate the catalytic diversity of cross β amyloid assemblies. The important role of morphology and specific mutations in peptide sequences has been underpinned in this review. We have divided the feature article into different sections where examples from biology have been covered demonstrating the mechanism of extant biocatalysts and compared with recent works on cross β amyloid folds showing covalent catalysis, aldolase, hydrolase, peroxidase-like activities and complex cascade catalysis. Beyond equilibrium, we have extended our discussion towards transient catalytic amyloid phases mimicking the energy driven cytoskeleton polymerization. Finally, a future outlook has been provided on the way ahead for short peptide-based systems chemistry approaches that can lead to the development of robust catalytic networks with improved enzyme-like proficiencies and higher complexities. The discussed examples along with the rationale behind selecting specific amino acids sequence will benefit readers to design systems for achieving catalytic reactivity similar to natural complex enzymes.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Surashree Goswami
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
42
|
Synergistic Effect of Urease and Nitrification Inhibitors in the Reduction of Ammonia Volatilization. WATER AIR AND SOIL POLLUTION 2021. [DOI: 10.1007/s11270-021-05259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
44
|
Zozulia O, Marshall LR, Kim I, Kohn EM, Korendovych IV. Self-Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity. Chemistry 2021; 27:5388-5392. [PMID: 33460473 PMCID: PMC8208039 DOI: 10.1002/chem.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/13/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanomaterials capable of promoting efficient catalysis. We have shown that short, seven-residue peptides bind hemin to produce functional catalytic materials which display highly efficient peroxidation activity, reaching a catalytic efficiency of 3×105 m-1 s-1 . Self-assembly is essential for catalysis as non-assembling controls show no activity. We have also observed peroxidase activity even in the absence of hemin, suggesting the potential to alter redox properties of substrates upon association with the assemblies. These results demonstrate the practical utility of self-assembled peptides in various catalytic applications and further support the evolutionary link between amyloids and modern-day enzymes.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Inhye Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Eric M. Kohn
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| |
Collapse
|
45
|
Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021; 9:641372. [PMID: 33748087 PMCID: PMC7966729 DOI: 10.3389/fbioe.2021.641372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
The discovery that the polypeptide chain has a remarkable and intrinsic propensity to form amyloid-like aggregates endowed with an extraordinary stability is one of the most relevant breakthroughs of the last decades in both protein/peptide chemistry and structural biology. This observation has fundamental implications, as the formation of these assemblies is systematically associated with the insurgence of severe neurodegenerative diseases. Although the ability of proteins to form aggregates rich in cross-β structure has been highlighted by recent studies of structural biology, the determination of the underlying atomic models has required immense efforts and inventiveness. Interestingly, the progressive molecular and structural characterization of these assemblies has opened new perspectives in apparently unrelated fields. Indeed, the self-assembling through the cross-β structure has been exploited to generate innovative biomaterials endowed with promising mechanical and spectroscopic properties. Therefore, this structural motif has become the fil rouge connecting these diversified research areas. In the present review, we report a chronological recapitulation, also performing a survey of the structural content of the Protein Data Bank, of the milestones achieved over the years in the characterization of cross-β assemblies involved in the insurgence of neurodegenerative diseases. A particular emphasis is given to the very recent successful elucidation of amyloid-like aggregates characterized by remarkable molecular and structural complexities. We also review the state of the art of the structural characterization of cross-β based biomaterials by highlighting the benefits of the osmosis of information between these two research areas. Finally, we underline the new promising perspectives that recent successful characterizations of disease-related amyloid-like assemblies can open in the biomaterial field.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
46
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Präbiotische Peptid‐Synthese und spontane Amyloid‐Bildung im Inneren eines protozellulären Kompartiments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Witek Kwiatkowski
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Radoslaw Bomba
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Pavel Afanasyev
- Wissenschaftliches Zentrum für optische und Elektronenmikroskopie Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 3 CH-8093 Zürich Schweiz
| | - Daniel Boehringer
- Institut für Molekularbiologie und Biophysik Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 5 CH-8093 Zürich Schweiz
| | - Roland Riek
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Jason Greenwald
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| |
Collapse
|
47
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
48
|
Lengyel-Zhand Z, Marshall LR, Jung M, Jayachandran M, Kim MC, Kriews A, Makhlynets OV, Fry HC, Geyer A, Korendovych IV. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. Chembiochem 2021; 22:585-591. [PMID: 32956537 PMCID: PMC8009494 DOI: 10.1002/cbic.202000645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The self-assembly of short peptides into catalytic amyloid-like nanomaterials has proven to be a powerful tool in both understanding the evolution of early proteins and identifying new catalysts for practically useful chemical reactions. Here we demonstrate that both parallel and antiparallel arrangements of β-sheets can accommodate metal ions in catalytically productive coordination environments. Moreover, synergistic relationships, identified in catalytic amyloid mixtures, can be captured in macrocyclic and sheet-loop-sheet species, that offer faster rates of assembly and provide more complex asymmetric arrangements of functional groups, thus paving the way for future designs of amyloid-like catalytic proteins. Our findings show how initial catalytic activity in amyloid assemblies can be propagated and improved in more-complex molecules, providing another link in a complex evolutionary chain between short, potentially abiotically produced peptides and modern-day enzymes.
Collapse
Affiliation(s)
- Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Maximilian Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
49
|
Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto-Cellular Compartment. Angew Chem Int Ed Engl 2021; 60:5561-5568. [PMID: 33325627 DOI: 10.1002/anie.202015352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.
Collapse
Affiliation(s)
- Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Radoslaw Bomba
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Pavel Afanasyev
- Scientific Center for Optical and Electron Microscopy, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 3, CH-8093, Zürich, Switzerland
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 5, CH-8093, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|