1
|
Wu M, Shi J, Sa N, Wu R, Deng T, Yang R, Zhang KHL, Han P, Wang HQ, Kang J. Ferromagnetic Insulating Ground-State Resolved in Mixed Protons and Oxygen Vacancies-Doped La 0.67Sr 0.33CoO 3 Thin Films via Ionic Liquid Gating. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624095 DOI: 10.1021/acsami.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The realization of ferromagnetic insulating ground state is a critical prerequisite for spintronic applications. By applying electric field-controlled ionic liquid gating (ILG) to stoichiometry La0.67Sr0.33CoO3 thin films, the doping of protons (H+) has been achieved for the first time. Furthermore, a hitherto-unreported ferromagnetic insulating phase with a remarkably high Tc up to 180 K has been observed which can be attributed to the doping of H+ and the formation of oxygen vacancies (VO). The chemical formula of the dual-ion migrated film has been identified as La2/3Sr1/3CoO8/3H2/3 based on combined Co L23-edge absorption spectra and configuration interaction cluster calculations, from which we are able to explain the ferromagnetic ground state in terms of the distinct magnetic moment contributions from Co ions with octahedral (Oh) and tetrahedral (Td) symmetries following antiparallel spin alignments. Further density functional theory calculations have been performed to verify the functionality of H+ as the transfer ion and the origin of the novel ferromagnetic insulating ground state. Our results provide a fundamental understanding of the ILG regulation mechanism and shed light on the manipulating of more functionalities in other correlated compounds through dual-ion manipulation.
Collapse
Affiliation(s)
- Meng Wu
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| | - Jueli Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Na Sa
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| | - Ruoyu Wu
- Department of Physics, Beijing Key Lab for Metamaterials and Devices, Capital Normal University, Beijing 100048, P.R. China
| | - Tielong Deng
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| | - Renqi Yang
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Peng Han
- Department of Physics, Beijing Key Lab for Metamaterials and Devices, Capital Normal University, Beijing 100048, P.R. China
| | - Hui-Qiong Wang
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| | - Junyong Kang
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
2
|
Oxygen-Deficient Engineering for Perovskite Oxides in the Application of AOPs: Regulation, Detection, and Reduction Mechanism. Catalysts 2023. [DOI: 10.3390/catal13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A perovskite catalyst combined with various advanced oxidation processes (AOPs) to treat organic wastewater attracted extensive attention. The physical and chemical catalytic properties of perovskite were largely related to oxygen vacancies (OVs). In this paper, the recent advances in the regulation of OVs in perovskite for enhancing the functionality of the catalyst was reviewed, such as substitution, doping, heat treatment, wet-chemical redox reaction, exsolution, and etching. The techniques of detecting the OVs were also reviewed. An insight was provided into the OVs of perovskite and reduction mechanism in AOPs in this review, which is helpful for the reader to better understand the methods of regulating and detecting OVs in various AOPs.
Collapse
|
3
|
Nakakura S, Arif AF, Machida K, Adachi K, Ogi T. Cationic Defect Engineering for Controlling the Infrared Absorption of Hexagonal Cesium Tungsten Bronze Nanoparticles. Inorg Chem 2019; 58:9101-9107. [PMID: 31244089 DOI: 10.1021/acs.inorgchem.9b00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cesium tungsten bronzes (Cs0.32WO3) have attracted much attention as a near-infrared absorbing material. We report the successful synthesis of highly crystalline and high purity Cs0.32WO3 nanoparticles through a spray pyrolysis route. Careful analyses disclosed the presence of cationic defects, that is, a tungsten deficiency and insufficient Cs doping in the Cs0.32WO3 nanoparticles. These cationic defects can be controlled by facile heat treatment in a mildly reducing atmosphere. In particular, we clarify that the tungsten deficiency is a key factor among the cationic defects to obtain high near-infrared absorption properties. Furthermore, this study clearly demonstrates the precise tunability of the optical properties by means of the lattice constants of the Cs0.32WO3 crystal. The realized range of lattice constants is significantly wider than those previously reported. These findings should contribute to the engineering of Cs0.32WO3 structure and properties.
Collapse
Affiliation(s)
- Shuhei Nakakura
- Department of Chemical Engineering , Hiroshima University , 1-4-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8527 , Japan.,Ichikawa Research Center , Sumitomo Metal Mining Co., Ltd , 3-18-5 Nakakokubun , Ichikawa , Chiba 272-8588 , Japan
| | - Aditya Farhan Arif
- Department of Chemical Engineering , Hiroshima University , 1-4-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8527 , Japan
| | - Keisuke Machida
- Ichikawa Research Center , Sumitomo Metal Mining Co., Ltd , 3-18-5 Nakakokubun , Ichikawa , Chiba 272-8588 , Japan
| | - Kenji Adachi
- Ichikawa Research Center , Sumitomo Metal Mining Co., Ltd , 3-18-5 Nakakokubun , Ichikawa , Chiba 272-8588 , Japan
| | - Takashi Ogi
- Department of Chemical Engineering , Hiroshima University , 1-4-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8527 , Japan
| |
Collapse
|