1
|
Yosefi G, Kass I, Rapaport H, Bitton R. Decoupling Charge and Side Chain Effects in Hierarchical Organization of Cationic PFX Peptide and Alginate. Biomacromolecules 2024; 25:4168-4176. [PMID: 38902961 DOI: 10.1021/acs.biomac.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have successfully created self-assembled membranes by combining positively charged (Pro-X-(Phe-X)5-Pro) PFX peptides with negatively charged alginate. These PFX/alginate membranes were formed by three different peptides that contain either X = Arginine (R), Histidine (H), or Ornithine (O) as their charged amino acid. The assemblies were compared to membranes that were previously reported by us composed of X = lysine (K). This study enabled us to elucidate the impact of amino acids' specific interactions on membrane formation. SEM, SAXS, and cryo-TEM measurements show that although K, R, H, and O may have a similar net charge, the specific traits of the charged amino acid is an essential factor in determining the hierarchical structure of alginate/PFX self-assembled membranes.
Collapse
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itamar Kass
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
2
|
Fang Z, Zhang M, Wang H, Chen J, Yuan H, Wang M, Ye S, Jia YG, Sheong FK, Wang Y, Wang L. Marriage of High-Throughput Gradient Surface Generation With Statistical Learning for the Rational Design of Functionalized Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303253. [PMID: 37795620 DOI: 10.1002/adma.202303253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Functional biomaterial is already an important aspect in modern therapeutics; yet, the design of novel multi-functional biomaterial is still a challenging task nowadays. When several biofunctional components are present, the complexity that arises from their combinations and interactions will lead to tedious trial-and-error screening. In this work, a novel strategy of biomaterial rational design through the marriage of gradient surface generation with statistical learning is presented. Not only can parameter combinations be screened in a high-throughput fashion, but also the optimal conditions beyond the experimentally tested range can be extrapolated from the models. The power of the strategy is demonstrated in rationally designing an unprecedented ternary functionalized surface for orthopedic implant, with optimal osteogenic, angiogenic, and neurogenic activities, and its optimality and the best osteointegration promotion are confirmed in vitro and in vivo, respectively. The presented strategy is expected to open up new possibilities in the rational design of biomaterials.
Collapse
Affiliation(s)
- Zhou Fang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Zhang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Haipeng Yuan
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Mengyao Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Silin Ye
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjun Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Yuan Y, Shi Y, Banerjee J, Sadeghpour A, Azevedo HS. Structuring supramolecular hyaluronan hydrogels via peptide self-assembly for modulating the cell microenvironment. Mater Today Bio 2023; 19:100598. [PMID: 36942310 PMCID: PMC10024175 DOI: 10.1016/j.mtbio.2023.100598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The use of synthetic extracellular matrices (ECMs) in fundamental in vitro cell culture studies has been instrumental for investigating the interplay between cells and matrix components. To provide cells with a more native environment in vitro, it is desirable to design matrices that are biomimetic and emulate compositional and structural features of natural ECMs. Here, the supramolecular fabrication of peptide-hyaluronan (HA) hydrogels is presented as potential ECM surrogates, combining native HA and rationally designed cationic amphipatic peptides [(KI)nK, lysine (K), isoleucine (I), n = 2-6] whose mechanical properties and microstructure are tunable by the peptide sequence. (KI)nK peptides adopt β-sheet configuration and self-assemble into filamentous nanostructures triggered by pH or ionic strength. The self-assembly propensity of (KI)nK peptides increases with the sequence length, forming single phase hydrogels (shorter peptides) or with phase separation (longer peptides) in presence of the anionic polyelectrolyte HA through electrostatic complexations. The gel phase formed in (KI)nK-HA complexes exhibits viscoelastic behavior and triggers the formation of human mesenchymal stem cell (MSC) spheroids which disassemble over the time. It is anticipated that these (KI)nK-HA hydrogels with tunable physical and biochemical properties offer a promising platform for in vitro applications and in stem cell therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- Zhejiang Lab, Hangzhou, 311121, Zhejiang, PR China
| | - Yejiao Shi
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Jayati Banerjee
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-180, Porto, Portugal
| |
Collapse
|
4
|
Yosefi G, Bitton R. Hierarchical Membranes Self‐Assembled at the Interface between Peptides and Polymer Aqueous Solutions. Isr J Chem 2022. [DOI: 10.1002/ijch.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ronit Bitton
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI) Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
5
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
6
|
Levi T, Yosefi G, Bitton R, Rapaport H. Macroscopic membranes self‐assembled by alginate and a cationic and amphiphilic peptide for cell culture. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Topaz Levi
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Gal Yosefi
- Department of Chemical Engineering Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Ronit Bitton
- Department of Chemical Engineering Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI) Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI) Ben‐Gurion University of the Negev Beer‐Sheva Israel
| |
Collapse
|
7
|
Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater 2022; 8:309-324. [PMID: 34541403 PMCID: PMC8427090 DOI: 10.1016/j.bioactmat.2021.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Polyetheretherketone (PEEK) has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance. However, its biological inertness, poor osteoinduction, and weak antibacterial activity make the clinical applications in a dilemma. Inspired by the mussel adhesion mechanism, here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins (Mfps)-mimic peptide with clickable azido terminal. The peptide enables mussel-like adhesion on PEEK biomaterial surfaces, leaving azido groups for the further steps of biofunctionalizations. In this study, antimicrobial peptide (AMP) and osteogenic growth peptide (OGP) were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair. Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios, an optimal PEEK surface was finally obtained in this research, which could long-term inhibit bacterial growth, stabilize bone homeostasis and facilitate interfacial bone regeneration. In a word, this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants, in particular, achieving rational integration of multiple biofunctions to match clinical requirements.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ning Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
8
|
Sasselli IR, Syrgiannis Z, Sather NA, Palmer LC, Stupp SI. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. J Phys Chem B 2022; 126:650-659. [PMID: 35029997 DOI: 10.1021/acs.jpcb.1c09258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.
Collapse
Affiliation(s)
- Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
10
|
Localized Enzyme-Assisted Self-Assembly in the Presence of Hyaluronic Acid for Hybrid Supramolecular Hydrogel Coating. Polymers (Basel) 2021; 13:polym13111793. [PMID: 34072331 PMCID: PMC8198348 DOI: 10.3390/polym13111793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogel coating is highly suitable in biomaterial design. It provides biocompatibility and avoids protein adsorption leading to inflammation and rejection of implants. Moreover, hydrogels can be loaded with biologically active compounds. In this field, hyaluronic acid has been largely studied as an additional component since this polysaccharide is naturally present in extracellular matrix. Strategies to direct hydrogelation processes exclusively from the surface using a fully biocompatible approach are rare. Herein we have applied the concept of localized enzyme-assisted self-assembly to direct supramolecular hydrogels in the presence of HA. Based on electronic and fluorescent confocal microscopy, rheological measurements and cell culture investigations, this work highlights the following aspects: (i) the possibility to control the thickness of peptide-based hydrogels at the micrometer scale (18–41 µm) through the proportion of HA (2, 5 or 10 mg/mL); (ii) the structure of the self-assembled peptide nanofibrous network is affected by the growing amount of HA which induces the collapse of nanofibers leading to large assembled microstructures underpinning the supramolecular hydrogel matrix; (iii) this changing internal architecture induces a decrease of the elastic modulus from 2 to 0.2 kPa when concentration of HA is increasing; (iv) concomitantly, the presence of HA in supramolecular hydrogel coatings is suitable for cell viability and adhesion of NIH 3T3 fibroblasts.
Collapse
|
11
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
12
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
13
|
Yosefi G, Levi T, Rapaport H, Bitton R. Time matters for macroscopic membranes formed by alginate and cationic β-sheet peptides. SOFT MATTER 2020; 16:10132-10142. [PMID: 32812622 DOI: 10.1039/d0sm01197e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchically ordered planar and spherical membranes (sacs) were constructed using amphiphilic and cationic β-sheet peptides that spontaneously assembled together with negatively charged alginate solution. The system was found to form either a fully developed membrane structure with three distinct regions including characteristic perpendicular fibers or a non-fully developed contact layer lacking these standing fibers, depending on the peptide age, membrane geometry and membrane incubation time. The morphological differences were found to strongly depend on fairly-long incubation time frames that influenced both the peptide's intrinsic alignment and the reaction-diffusion process taking place at the interface. A three-stage mechanism was suggested and key parameters affecting the development process were identified. Stability tests in biologically relevant buffers confirmed the suitability of these membranes for bio applications.
Collapse
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
14
|
Radvar E, Shi Y, Grasso S, Edwards-Gayle CJC, Liu X, Mauter MS, Castelletto V, Hamley IW, Reece MJ, S Azevedo H. Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22661-22672. [PMID: 32283011 DOI: 10.1021/acsami.0c05191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A molecular design approach to fabricate nanofibrous membranes by self-assembly of aromatic cationic peptides with hyaluronic acid (HA) and nanofiber alignment under a magnetic field is reported. Peptides are designed to contain a block composed of four phenylalanine residues at the C-terminus, to drive their self-assembly by hydrophobic association and aromatic stacking, and have a positively charged domain of lysine residues for electrostatic interaction with HA. These two blocks are connected by a linker with a variable number of amino acids and the ability to adopt distinct conformations. Zeta potential measurements and circular dichroism confirm their positive charge and variable conformation (random coil, β-sheet, or α-helix), which depend on the pH and sequence. Their self-assembly, examined by fluorescence spectroscopy, small-angle X-ray scattering, and transmission electron microscopy, show the formation of fiberlike nanostructures in the micromolar range. When the peptides are combined with HA, hydrogels or flat membranes are formed. The molecular structure tunes the mechanical behavior of the membranes and the nanofibers align in the direction of magnetic field due to the high diamagnetic anisotropy of phenylalanine residues. Mesenchymal stem cells cultured on magnetically aligned membranes elongate in direction of the nanofibers supporting their application for soft tissue engineering.
Collapse
Affiliation(s)
- Elham Radvar
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Salvatore Grasso
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 61 0031, China
| | - Charlotte J C Edwards-Gayle
- School of Chemistry, Pharmacy and Food Sciences, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Xitong Liu
- Civil and Environmental Engineering, The George Washington University, 3520 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, United States
| | - Meagan S Mauter
- Civil and Environmental Engineering, Stanford University, Y2E2, 473 Via Ortega, Room 311, Stanford, California 94305, United States
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Sciences, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Sciences, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Michael J Reece
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Helena S Azevedo
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
15
|
Abalymov A, Van der Meeren L, Saveleva M, Prikhozhdenko E, Dewettinck K, Parakhonskiy B, Skirtach AG. Cells-Grab-on Particles: A Novel Approach to Control Cell Focal Adhesion on Hybrid Thermally Annealed Hydrogels. ACS Biomater Sci Eng 2020; 6:3933-3944. [DOI: 10.1021/acsbiomaterials.0c00119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | | | - Mariia Saveleva
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | - Ekaterina Prikhozhdenko
- Faculty of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | - Koen Dewettinck
- Department of Food Technology, Safety & Health, University of Gent, Ghent 9000, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
| |
Collapse
|
16
|
Long X, Xu H, Zhang D, Li J. Bioinspired by both mussel foot protein and bone sialoprotein: universal adhesive coatings for the promotion of mineralization and osteogenic differentiation. Polym Chem 2020. [DOI: 10.1039/d0py00774a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural protein bioinspired coatings are developed to promote the mineralization and osteogenic differentiation of MC3T3-E1 cells for implant material use.
Collapse
Affiliation(s)
- Xiaoling Long
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Huilin Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| |
Collapse
|
17
|
Fujita S, Wakuda Y, Matsumura M, Suye SI. Geometrically customizable alginate hydrogel nanofibers for cell culture platforms. J Mater Chem B 2019; 7:6556-6563. [PMID: 31588949 DOI: 10.1039/c9tb01353a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extracellular matrix (ECM) is composed of a hydrogel derived from natural polymers with an anisotropic structure that plays an important role in cell proliferation and differentiation. Alginates-algae-derived polysaccharides-form into the hydrogel, and can be potentially used for the synthesis of cell scaffold materials following the addition of calcium ions. However, to date, the synthesis of anisotropic alginate hydrogels has not been reported. Fibrillization by electrospinning is a simple method used to prepare anisotropic materials. However, it is difficult to fabricate pure alginate nanofibers by electrospinning without adding other polymers. In this study, we exploited the electrospinning method to prepare core-shell fibers in which alginate was encapsulated in the shell of a water-soluble polymer. Anisotropically aligned fibers were obtained with the use of a collector at a high-rotational speed. The gelation of alginate with calcium ions and the following washing process of the shell polymer were carried out and successfully formed pure and aligned alginate fibers. By immobilizing fibronectin on the fabricated alginate fibers and by culturing the cells, it was possible to control cell elongation in the fiber direction. We also successfully prepared a fibrous hydrogel on a wire that was used to construct a conduit-like structure after cells were cultured on it. This material provides a biomimetic cellular microenvironment that can be applied as a three-dimensional platform for cell culture.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan. and Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yuka Wakuda
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.
| | - Minori Matsumura
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan. and Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
18
|
Pang X, O'Malley C, Borges J, Rahman MM, Collis DWP, Mano JF, Mackenzie IC, S. Azevedo H. Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells. ACTA ACUST UNITED AC 2019; 3:e1900017. [DOI: 10.1002/adbi.201900017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - Clare O'Malley
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João Borges
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Muhammad M. Rahman
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Dominic W. P. Collis
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Ian C. Mackenzie
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| |
Collapse
|
19
|
Radvar E, Azevedo HS. Supramolecular Nanofibrous Peptide/Polymer Hydrogels for the Multiplexing of Bioactive Signals. ACS Biomater Sci Eng 2019; 5:4646-4656. [PMID: 33448837 DOI: 10.1021/acsbiomaterials.9b00941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to provide multiple functions within a single scaffold biomaterial is a major goal in tissue engineering. Self-assembling peptide-based hydrogels are gaining significant attention as three-dimensional biomaterials because they provide a network of nanofibers similar to the native extracellular matrix while allowing the presentation of multiple biochemical cues for cell signaling. Herein, we combine a positively charged peptide amphiphile (PA) and the negatively charged synthetic polymer poly(sodium 4-styrenesulfonate) (PSS) to fabricate hybrid hydrogels through supramolecular self-assembly. PSS/PA hydrogels show rather high mechanical stiffness while being stable in buffered environment. The sulfonate functionality in PSS promotes hydrogel mineralization which can be controlled if undertaken in standard osteogenic medium. Loading proteins with different charges in the hydrogels reveals their ability to retain and sustain their release and indicates their potential for the controlled delivery of growth factors. Human mesenchymal stem cells encapsulated in PSS/PA hydrogels remain viable. The biomimetic nanofibrous structure of the hydrogels, together with multiplexing of bioactive signals, can provide a suitable environment for stem cell differentiation.
Collapse
Affiliation(s)
- Elham Radvar
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
20
|
Li A, Xie J, Li J. Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B 2019; 7:509-527. [PMID: 32254786 DOI: 10.1039/c8tb02812e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone-related diseases seriously threaten people's health and research studies have been dedicated towards searching for new and effective treatment methods. Nanotechnologies have opened up a new field in recent decades and nanostructured materials, which exist in a variety of forms, are considered to be promising materials in this field. This article reviews the most recent progress in the development of nanostructured materials for bone-related diseases, including osteoporosis, osteoarthritis, bone metastasis, osteomyelitis, myeloma, and bone defects. We highlight the advantages and functions of nanostructured materials, including sustained release, bone targeting, scaffolding in bone tissue engineering, etc., in bone-related diseases. We also include the remaining challenges of these emerging materials.
Collapse
Affiliation(s)
- Anqi Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | |
Collapse
|
21
|
Aviv M, Halperin-Sternfeld M, Grigoriants I, Buzhansky L, Mironi-Harpaz I, Seliktar D, Einav S, Nevo Z, Adler-Abramovich L. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41883-41891. [PMID: 30211538 DOI: 10.1021/acsami.8b08423] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hyaluronic acid (HA), a major component of the extracellular matrix, is an attractive material for various medical applications. Yet, its low mechanical rigidity and fast in vivo degradation hinder its utilization. Here, we demonstrate the reinforcement of HA by its integration with a low-molecular-weight peptide hydrogelator to produce a composite hydrogel. The formulation of HA with the fluorenylmethoxycarbonyl diphenylalanine (FmocFF) peptide, one of the most studied self-assembling hydrogel-forming building blocks, showing notable mechanical properties, resulted in the formation of stable, homogeneous hydrogels. Electron microscopy analysis demonstrated a uniform distribution of the two matrices in the composite forms. The composite hydrogels showed improved mechanical properties and stability to enzymatic degradation while maintaining their biocompatibility. Moreover, the storage modulus of the FmocFF/HA composite hydrogels reached up to 25 kPa. The composite hydrogels allowed sustained release of curcumin, a hydrophobic polyphenol showing antioxidant, anti-inflammatory, and antitumor activities. Importantly, the rate of curcumin release was modulated as a function of the concentration of the FmocFF peptide within the hydrogel matrix. This work provides a new approach for conferring mechanical rigidity and stability to HA without the need of cross-linking, thus potentially facilitating its utilization in different clinical applications, such as sustained drug release.
Collapse
Affiliation(s)
- Moran Aviv
- School of Mechanical Engineering , Afeka Tel Aviv Academic College of Engineering , Tel Aviv 6910717 , Israel
| | | | | | | | - Iris Mironi-Harpaz
- Faculty of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | | | | | | |
Collapse
|
22
|
Radvar E, Azevedo HS. Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications. Macromol Biosci 2018; 19:e1800221. [PMID: 30101512 DOI: 10.1002/mabi.201800221] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/14/2018] [Indexed: 12/23/2022]
Abstract
Peptides and polymers are the "elite" building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self-assembly into hybrid hydrogels, as either peptide-polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.
Collapse
Affiliation(s)
- Elham Radvar
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS, UK
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS, UK
| |
Collapse
|
23
|
Tsutsumi H, Kawamura M, Mihara H. Osteoblastic differentiation on hydrogels fabricated from Ca2+-responsive self-assembling peptides functionalized with bioactive peptides. Bioorg Med Chem 2018; 26:3126-3132. [DOI: 10.1016/j.bmc.2018.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 11/15/2022]
|
24
|
Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research. Life (Basel) 2018; 8:life8020010. [PMID: 29738443 PMCID: PMC6027067 DOI: 10.3390/life8020010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/20/2023] Open
Abstract
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
Collapse
|
25
|
Li R, McRae NL, McCulloch DR, Boyd-Moss M, Barrow CJ, Nisbet DR, Stupka N, Williams RJ. Large and Small Assembly: Combining Functional Macromolecules with Small Peptides to Control the Morphology of Skeletal Muscle Progenitor Cells. Biomacromolecules 2018; 19:825-837. [DOI: 10.1021/acs.biomac.7b01632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, China
| | - Natasha L. McRae
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Daniel R. McCulloch
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
| | - David R. Nisbet
- Research School of Engineering, The Australian National University, Canberra 2601, Australia
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
| | - Nicole Stupka
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Richard J. Williams
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| |
Collapse
|