1
|
Luo X, Tan R, Li Q, Chen J, Xie Y, Peng J, Zeng M, Jiang M, Wu C, He Y. High-sensitivity long-range surface plasmon resonance sensing assisted by gold nanoring cavity arrays and nanocavity coupling. Phys Chem Chem Phys 2023; 25:9273-9281. [PMID: 36919713 DOI: 10.1039/d2cp05664j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In many of the existing refractive index (RI) sensing works, only the shape and size of plasmonic structures are usually taken into account, while the parameters of spacer layers are ignored. In this publication, we explored the long-range surface plasmon resonance (LRSPR) and Fabry-Pérot resonance coupling effects of our proposed gold nanoring cavity array/spacer layer/Au mirror/glass substrate. Both the RI sensitivity and full width at half-maximum (FWHM) values were superior than those of conventional surface plasmon resonance substrates. We discussed the tunability of the RI sensitivity through changing the RI and thickness of the spacer layer. Then, under the optimized parameter conditions of the spacer layer, the geometry parameters (including size, gap and periodicity) of gold nanoring cavity arrays were tuned to optimize the best RI sensitivity. Finally, we broke the structural symmetry of a nanoring cavity to introduce Fano resonances into our system, and a high RI sensitivity and figure-of-merit (FOM) of 695 nm per RIU (refractive index unit) and 96.5, respectively, were achieved when the breaking angle θ was 30°. This study opens up many possibilities for boosting the FOM of RI sensing by taking into account the hybridization effects of localized surface plasmon resonance, LRSPR, and Fabry-Pérot and Fano resonances.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Rui Tan
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Qiuju Li
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Jiaxin Chen
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Yalin Xie
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Mei Zeng
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Minghang Jiang
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| |
Collapse
|
2
|
Luo X, Qiao L, Xia Z, Yu J, Wang X, Huang J, Shu C, Wu C, He Y. Shape- and Size-Dependent Refractive Index Sensing and SERS Performance of Gold Nanoplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6454-6463. [PMID: 35549353 DOI: 10.1021/acs.langmuir.2c00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic sensors are promising for ultrasensitive chemical and biological analysis. Gold nanoplates (Au NPLs) show unique geometrical structures with high ratios of surface to bulk atoms, which display fascinating plasmonic properties but require optimization. This study presented a systematic investigation of the influence of different parameters (shape, aspect ratio, and resonance mode) on localized surface plasmon resonance properties, refractive index (RI, n) sensitivities, and surface-enhanced Raman scattering (SERS) enhancement ability of different types of Au NPLs through finite-difference time-domain (FDTD) simulations. As a proof of concept, triangular, circular, and hexagonal Au NPLs with varying aspect ratios were fabricated via a three-step seed-mediated growth method by the experiment. Both FDTD-simulated and measured experimental results confirm that the RI sensitivities increase with the aspect ratio. Furthermore, choosing a lower order resonance mode of Au NPLs benefits higher RI sensitivities. The SERS enhancement abilities of Au NPLs also predicted to be highly dependent on the shape and aspect ratio. The triangular Au NPLs showed the highest SERS enhancement ability, while it drastically decreased for circular Au NPLs after the rounding process. The SERS enhancement ability gradually became more intense as the hexagonal Au NPLs overgrown on circular Au NPLs with increasing volumes of HAuCl4 solution. The results are expected to help develop effective biosensors.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Zhichao Xia
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Jiaming Yu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Xiaozhou Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Juhong Huang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Chang Shu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
3
|
Liu S, Ju P, Lv L, Tang P, Wang H, Zhong L, Lu X. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation. OPTICS EXPRESS 2021; 29:35678-35690. [PMID: 34808997 DOI: 10.1364/oe.438895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic nanostructures with dual surface plasmon resonances capable of simultaneously realizing strong light confinement and efficient light radiation are attractive for light-matter interaction and nanoscale optical detection. Here, we propose an optical nanoantenna by adding gold nanoring to the conventional Fano-type resonance antenna. With the help of gold nanoring, the following improvements are simultaneously realized: (1). The near-field intensity of the Fano-type antenna is further enhanced by the Fabry Perot-like resonance formed by the combination of the gold nanoring and the substrate waveguide layer. (2). Directional radiation is realized by the collaboration of the gold nanoring and the Fano-type antenna, thus improving the collection efficiency of the far-field signal. (3). The multi-wavelength tunable performance of the Fano resonance antenna is significantly improved by replacing the superradiation mode in the Fano resonance with the dipole resonance induced by the gold nanoring. The optical properties of the nanoantennas are demonstrated by numerical simulations and practical devices. Therefore, the proposed optical nanoantenna provides a new idea for further improving the performance of conventional Fano-type nanoantennas and opens new horizons for designing plasmonic devices with enhancements in both near- and far-field functionalities, which can be applied in a wide range of applications such as surface-enhanced spectroscopy, photoluminescence, nonlinear nanomaterials/emitters and biomedicine sensing.
Collapse
|
4
|
Tian L, Wang C, Zhao H, Sun F, Dong H, Feng K, Wang P, He G, Li G. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. J Am Chem Soc 2021; 143:8631-8638. [PMID: 34077205 DOI: 10.1021/jacs.0c13377] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic dimers not only provide a unique platform for studying fundamental plasmonic behavior and effects but also are functional materials for numerous applications. The efficient creation of well-defined dimers with flexible control of structure parameters and thus tunable optical property is the prerequisite for fully exploiting the potential of this nanostructure. Herein, based on a polymer-assisted self-assembly approach in conjugation with molecular cage chemistry, a strategy was demonstrated for constructing cage-bridged plasmonic dimers with controlled sizes, compositions, shape, symmetry, and interparticle gap separation in a modular and high-yield manner. With a high degree of freedom and controllability, this strategy allows facilely accessing various symmetrical/asymmetrical dimers with sub-5 nm gap distance and tailored optical properties. Importantly, as the linkage of the two constituent elements, the molecular cages embedded in the junction endow the assembled dimers with the ability to precisely and reversibly host rich guest molecules in hotspot regions, offering great potential for creating various plasmon-mediated applications.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Fuwei Sun
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Peng Wang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chen Z, Zhang S, Chen Y, Liu Y, Li P, Wang Z, Zhu X, Bi K, Duan H. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. NANOSCALE 2020; 12:9776-9785. [PMID: 32324182 DOI: 10.1039/d0nr00461h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fano resonance can be achieved by the destructive interference between a superradiant bright mode and a subradiant dark mode. A variety of artificial plasmonic oligomers have been fabricated to generate Fano resonance for its extensive applications. However, the Fano resonance in plasmonic oligomer systems comes from the interaction of all metal particles, which greatly limits the tunability of the Fano resonance. Besides, only a single Fano resonance is supported by many existing plasmonic oligomers, while multiple Fano resonances mostly occur in complex and multilayer structures, whose fabrication is greatly challenging. Here, a simple asymmetric plasmonic molecule consisting of a central metal disk and two side-coupled parallel metal rods is demonstrated. The simulation and experimental results clearly show that double Fano resonances appear in the transmission spectrum. In addition, the two Fano peaks can be independently tuned and single/double Fano peak switching can be achieved by changing one rod length or the gap distances between the rods and the disk. The modulation method is simple and effective, which greatly increases the tunability of the structure. The proposed asymmetric artificial plasmonic molecule can have applications in multi-channel optical switches, filters and biosensors. Moreover, the controllable plasmonic field intensity in the gap between the disk and rods also provides a new control means for plasmon-induced photocatalytic reactions and biosynthesis.
Collapse
Affiliation(s)
- Zhiquan Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China. and School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
| | - Shi Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yiqin Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Ping Li
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Zhaolong Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Kaixi Bi
- Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Huigao Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
6
|
Cui X, Lai Y, Qin F, Shao L, Wang J, Lin HQ. Strengthening Fano resonance on gold nanoplates with gold nanospheres. NANOSCALE 2020; 12:1975-1984. [PMID: 31912072 DOI: 10.1039/c9nr09976j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic Fano resonance has attracted extensive attention due to its many applications, including plasmonic sensing, electromagnetically induced transparency, light trapping and stopping, due to its narrow linewidth and asymmetric spectral shape. However, many metal nanostructures are designed with complex geometries to generate Fano resonance and few of them can support a deep Fano dip. Herein we report on the strengthening of the Fano resonance on silicon-supported Au nanoplates through the formation of (Au nanosphere)-(Au nanoplate) heterodimers. The deposition of the Au nanosphere on the top can greatly strengthen the substrate-induced Fano resonance of the Au nanoplate with a deep dip. We also observe that the replacement of the Au nanosphere with a Au nanocube can suppress the excitation of the Fano resonance in the heterodimer. When the sharp corners and edges of the nanocubes gradually become rounded, the Fano resonance appears again with increasing asymmetry. Both the dip depth and wavelength of the Fano resonance can be independently tailored by varying the nanosphere diameter and the nanoplate thickness, respectively. We believe that our results provide an attractive and facile platform for modulating Fano dips and constructing Fano resonance-based devices.
Collapse
Affiliation(s)
- Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
7
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
8
|
Chow TH, Lai Y, Cui X, Lu W, Zhuo X, Wang J. Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902608. [PMID: 31304668 DOI: 10.1002/smll.201902608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Indexed: 05/18/2023]
Abstract
Gold nanorings are attractive as plasmonic metal nanocrystals because they have a hollow inner cavity. Their enhanced electric field inside the ring cavity is accessible, which is highly desirable for assembling with other optical components and studying their plasmon-coupling behaviors. However, the lack of robust methods for synthesizing size-controllable and uniform Au nanorings severely impedes the study of their attractive plasmonic properties and plasmon-driven applications. Herein, an improved wet-chemistry method is reported for the synthesis of monodisperse colloidal Au nanorings. Using circular Au nanodisks with different thicknesses and diameters as templates, Au nanorings are synthesized with thicknesses varied from ≈30 to ≈50 nm and cavity sizes varied from ≈90 to ≈40 nm. The produced Au nanorings are assembled with colloidal Au nanospheres to yield Au nanoring-nanosphere heterodimers in sphere-in-ring and sphere-on-ring configurations on substrates. The sphere-in-ring heterodimers exhibit the interesting feature of plasmonic Fano resonance upon the excitation of the dark quadrupolar plasmon mode of the Au nanorings. The open cavity in a nanoring holds a great promise for studying plasmon-coupled systems, which will facilitate the construction of advanced metamaterials and high-performance Fano-based devices.
Collapse
Affiliation(s)
- Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Yunhe Lai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| |
Collapse
|
9
|
Lu W, Cui X, Chow TH, Shao L, Wang H, Chen H, Wang J. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers. NANOSCALE 2019; 11:9641-9653. [PMID: 31065663 DOI: 10.1039/c9nr01653h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interference between spectrally overlapping superradiant and subradiant plasmon resonances generates plasmonic Fano resonance, which allows for attractive applications such as electromagnetically induced transparency, light trapping, and refractometric sensing with high figures of merit. The active switching of plasmonic Fano resonance holds great promise in modulating optical signals, dynamically harvesting light energy, and constructing switchable plasmonic sensors. However, structures enabling the active control of plasmonic Fano resonance have rarely been achieved because of the fabrication complexity and cost. Herein we report on the realization of active plasmonic Fano resonance switching on Au nanosphere-nanoplate heterodimers. The active switching is enabled by varying the refractive index of a layer of polyaniline that fills in the gap between the Au nanosphere and the Au nanoplate. A reversible spectral shift of 20 nm is observed on the individual heterodimers during switching. The maximal spectral shift decreases as the interparticle gap distance is enlarged, showing a strong dependence of the spectral shift on the local electric field intensity enhancement in the gap region. This trend agrees with the predicted dependence of the refractive index sensitivity on the local field intensity enhancement. Our results provide insights into the development of plasmonic structures supporting actively switchable Fano resonances, which can lead to new technological applications, such as switchable cloaking and display, dynamic coding of optical signals, color sorting and filtering. The Au heterodimers with polyaniline in the gap can also be applied for the sensing of local environmental parameters such as pH values and heavy metal ions.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|