1
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
2
|
Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S, Zhang Z. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectron 2022; 202:114025. [DOI: 10.1016/j.bios.2022.114025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
3
|
Kotlarek D, Fossati S, Venugopalan P, Gisbert Quilis N, Slabý J, Homola J, Lequeux M, Amiard F, Lamy de la Chapelle M, Jonas U, Dostálek J. Actuated plasmonic nanohole arrays for sensing and optical spectroscopy applications. NANOSCALE 2020; 12:9756-9768. [PMID: 32324184 DOI: 10.1039/d0nr00761g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report a new approach to rapidly actuate the plasmonic characteristics of thin gold films perforated with nanohole arrays that are coupled with arrays of gold nanoparticles. The near-field interaction between the localized and propagating surface plasmon modes supported by the structure was actively modulated by changing the distance between the nanoholes and nanoparticles and varying the refractive index symmetry of the structure. This approach was applied by using a thin responsive hydrogel cushion, which swelled and collapsed by a temperature stimulus. The detailed experimental study of the changes and interplay of localized and propagating surface plasmons was complemented by numerical simulations. We demonstrate that the interrogation and excitation of the optical resonance to these modes allow the label-free SPR observation of the binding of biomolecules, and is applicable for in situ SERS studies of low molecular weight molecules attached in the gap between the nanoholes and nanoparticles.
Collapse
Affiliation(s)
- Daria Kotlarek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Wang Z, Xu D, Wang X, Jin Y, Huo B, Wang Y, He C, Fu X, Lu N. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. NANOSCALE 2019; 11:6677-6684. [PMID: 30899928 DOI: 10.1039/c9nr00173e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and treatment, but it is still a challenge to recognize and isolate CTCs because they are very rare in the blood. To selectively recognize CTCs and improve the capture efficiency, micro/nanostructured substrates have been fabricated for this application; however the size of CTCs is often ignored in designing and engineering micro/nanostructured substrates. Herein, a spiky polymer micropillar array is fabricated for capturing CTCs with high efficiency. The surface of the micropillar is cactus-like, and is composed of nanospikes. This hierarchical polymer array is designed according to the size of CTCs, which allows for more interactions of the CTCs with the array by setting the size of gaps among the micropillars to match with the CTCs. This polymer array is created by molding on an ordered silicon array, and then it is coated with an antiepithelial cell adhesion molecule antibody (anti-EpCAM). After co-culture with MCF-7 cells for 45 min, the capture efficiency of this array for CTCs is up to 91% ± 2%. Moreover, the anti-EpCAM modified polymer micropillar arrays present an excellent capacity to isolate CTCs from the whole blood samples of breast cancer patients. This study may provide a new concept for capturing target cells by designing and engineering micro/nanostructured substrates according to the size of target cells.
Collapse
Affiliation(s)
- Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang H, Li H, Xu D. High-density micro-well array with aptamer-silver conjugates for cell sorting and imaging at single cells. Anal Chim Acta 2019; 1063:127-135. [PMID: 30967176 DOI: 10.1016/j.aca.2019.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Characterizing cell behavior is important to modern medical diagnoses as the changes of cell behavior are often indicators of huge diseases. In order to gain enough information about cells, developing novel methods of cell sorting and imaging is an important task. With development of micro-fabrication technologies, more advanced miniaturized devices are applied to cell research. Here, a portable and easy-to-use chip with high-density periodic micro-well array is designed and fabricated to capture target cells specifically. Combining with aptamer-silver conjugates and FAM functioned report probes, the sandwich assay was successfully applied for imaging cells. Any well of the chip is carefully designed to provide abundant information on single cells. Since there are 19,200 microwells in a single chip, more information is available. Compared to other cells, such as HEK-293, MCF-7, U2OS and Ramos cells, the sandwich assay shows high specificity towards target cell CCRF-CEM. What's more, the applications of the chip can be further expanded to other cells imaging if suitable aptamers were selected. This high-density micro-well array of aptamer-silver conjugates is hopeful to play an important role in medical diagnosis in the future.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
7
|
Song Y, Shi Y, Huang M, Wang W, Wang Y, Cheng J, Lei Z, Zhu Z, Yang C. Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. Angew Chem Int Ed Engl 2019; 58:2236-2240. [PMID: 30548959 DOI: 10.1002/anie.201809337] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Circulating tumor cell (CTC)-enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)-patterned microfluidic chip modified with multivalent aptamer-functionalized nanospheres (AP-Octopus-Chip) to enhance capture efficiency. The multivalent aptamer-antigen binding efficiency improves 100-fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer-modified chip. Moreover, the captured cancer cells can be released through a thiol exchange reaction with up to 80 % efficiency and 96 % viability, which is fully compatible with downstream mutation detection and CTC culture. Using the chip, we were able to find CTCs in all cancer samples analyzed.
Collapse
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanzhi Shi
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jie Cheng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhichao Lei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Wang Y, Wang J, Meng J, Ding G, Shi Z, Wang R, Zhang X. Detection of non-small cell lung cancer cells based on microfluidic polarization microscopic image analysis. Electrophoresis 2018; 40:1202-1211. [PMID: 30378691 DOI: 10.1002/elps.201800284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/05/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022]
Abstract
In early diagnosis of lung cancer, a polarization microscopy is a powerful tool to obtain the optical information of biological tissues. In this paper, a new microfluidic polarization imaging and analysis method was proposed for the detection and classification of cancer-associated fibroblasts and the two kinds of non-small cell lung cancer cells, A549 and H322. A polarizing microscopy system was constructed based on a commercial microscope to obtain 3*3 Mueller matrix of cells. Based on the Muller matrix decomposition algorithm and analysis in spatial domain and frequency domain, appropriate classification parameters were selected for the characterization of different polarization characteristics of cells. Finally, the logistic regression models based on machine learning were applied to determine optimal feature parameters and classify cells. This method integrated the morphological information of the cells, and the polarization characteristics of the cells in different polarization states. It is for the first time that the polarization microscopic image analysis method has been applied to the detection and classification of non-small cell lung cancer cells. The results show that the presented microfluidic polarization microscopic image analysis method could classify cells effectively. Compared with the Muller matrix measurement and calculation methods, the method proposed in this paper was greatly simplified in both the acquisition of polarized images and the analysis and processing of polarized images.
Collapse
Affiliation(s)
- Yanjuan Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
- Software Institute, Dalian Jiaotong University, Dalian, P. R. China
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Jie Meng
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Gege Ding
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Zhi Shi
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Ruoyu Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
| | - Xiaohui Zhang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, P. R. China
| |
Collapse
|