1
|
Zhao W, Guan Z, Li D, Wang B, Fan M, Zhang R. Syngas Conversion to C 2 Species over WC and M/WC (M = Cu or Rh) Catalysts: Identifying the Function of Surface Termination and Supported Metal Type. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19491-19504. [PMID: 35467825 DOI: 10.1021/acsami.2c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the selectivity and activity of C2 species from syngas is still a challenge. In this work, catalysts with monolayer Cu or Rh supported over WC with different surface terminations (M/WC (M = Cu or Rh)) are rationally designed to facilitate C2 species generation. The complete reaction network is analyzed by DFT calculations. Microkinetics modeling is utilized to consider the experimental reaction temperature, pressure, and the coverage of the species. The thermal stabilities of the M/WC (M = Cu or Rh) catalysts are confirmed by AIMD simulations. The results show that the surface termination and supported metal types in the M/WC (M = Cu or Rh) catalysts can alter the existence form of abundant CHx (x = 1-3) monomer, as well as the activity and selectivity of CHx monomer and C2 species. Among these, only the Cu/WC-C catalyst is screened out to achieve outstanding activity and selectivity for C2H2 generation, attributing to that the synergistic effect of the subsurface C atoms and the surface monolayer Cu atoms presents the noble-metal-like character to promote the generation of CHx and C2 species. This work demonstrates a new possibility for rational construction of other catalysts with the non-noble metal supported by the metal carbide, adjusting the surface termination of metal carbide and the supported metal types can present the noble-metal-like character to tune catalytic performance of C2 species from syngas.
Collapse
Affiliation(s)
- Wantong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Zun Guan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Debao Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China
| | - Baojun Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| | - Maohong Fan
- College of Engineering and Applied Science, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| |
Collapse
|
2
|
Zhang J, She Y. Decomposition mechanism of HCOOH on Pt/WC(0001) surfaces: a density functional theory study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2019.1663845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jinhua Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People’s Republic of China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou, People’s Republic of China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Zhang X, Chang Q, Yang Z, Wang W. Surface vacancy on PtTe 2 for promoting CO oxidation through efficiently activating O 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025201. [PMID: 31550687 DOI: 10.1088/1361-648x/ab4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum group metal dichalcogenides (PtTe2) with controllable thickness have been synthesized and confirmed to be promising electric and spintronic materials. Here, using the first-principles calculations, we demonstrate the potential application of PtTe2 as catalyst substrate. Taking CO oxidation as model reaction, the importance of surface vacancy is clarified. It is found that surface vacancy on PtTe2 could improve the stability and catalytic activity of the supported Pt atom. The details of CO oxidation processes indicate that surface vacancy could weaken the adsorption of reactants and speed up the formation and decomposition of OOCO intermediate on Pt catalysts. The underlying mechanisms for the improved activity are unveiled through comprehensively analyzing the charge transfer, density of states, and charge density difference. We hope that the current findings were beneficial for the research and development of efficient catalysts by collocating various single atom/cluster catalysts with different platinum group metal dichalcogenides.
Collapse
Affiliation(s)
- Xilin Zhang
- School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | | | | | | |
Collapse
|
5
|
Wang Y, Zhang X, Fu Z, Lu Z, Yang Z. An electronic perturbation in TiC supported platinum monolayer catalyst for enhancing water-gas shift performance: DFT study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:305201. [PMID: 30991374 DOI: 10.1088/1361-648x/ab1a13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The water-gas shift (WGS) reaction behaviors over the TiC(0 0 1) supported Pt monolayer catalyst (PtML/TiC(0 0 1)) are investigated by using the spin-unrestricted density functional theory calculations. Importantly, we find that the PtML/TiC(0 0 1) system exhibits a much lower density of Pt-5d states nearby the Fermi level compared with that for Pt(1 1 1), and the monolayer Pt atoms undergo an electronic perturbation when in contact with TiC(0 0 1) support that would strongly improve the WGS activity of supported Pt atoms. Our calculations clearly indicate that the dominant reaction path follows a carboxyl mechanism involving a key COOH intermediate, rather than the common redox mechanism. Furthermore, through the detailed comparisons, the results demonstrate that the strong interactions between the monolayer Pt atoms and TiC(0 0 1) support make PtML/TiC(0 0 1) a highly active catalyst for the low-temperature WGS reaction. Following the route presented by Bruix et al (2012 J. Am. Chem. Soc. 134 8968-74), the positive effect derived from strong metal-support interaction in the metal/carbide system is revealed.
Collapse
Affiliation(s)
- Yan Wang
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
Jimenez-Orozco C, Flórez E, Montoya A, Rodriguez JA. Binding and activation of ethylene on tungsten carbide and platinum surfaces. Phys Chem Chem Phys 2019; 21:17332-17342. [DOI: 10.1039/c9cp03214b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Density functional theory calculations were used to evaluate the ability of surfaces of cubic and hexagonal phases of tungsten carbide to bind ethylene.
Collapse
Affiliation(s)
| | - Elizabeth Flórez
- Universidad de Medellín
- Facultad de Ciencias Básicas
- Medellín
- Colombia
| | - Alejandro Montoya
- University of Sydney
- School of Chemical and Biomolecular Engineering
- Sydney
- Australia
| | | |
Collapse
|