1
|
Andatsu H, Terashima Y, Kawamura R, Matsuda Y, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of 2,2-Disubstituted 2,3-Dihydro-4-quinolones from Isatins and 2'-Aminoacetophenones. Org Lett 2025; 27:258-263. [PMID: 39718907 DOI: 10.1021/acs.orglett.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an in situ generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee. Detailed density functional theory (DFT) calculations support the proposed reaction mechanism and the origin of asymmetric induction.
Collapse
Affiliation(s)
- Hidenori Andatsu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yuto Terashima
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Rio Kawamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Remote stereocontrol in the (4 + 2) cycloadditions of 1,7-zwitterions: Asymmetric synthesis of multifunctionalized tetrahydroquinoline derivatives. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Pogrányi B, Mielke T, Díaz‐Rodríguez A, Cartwright J, Unsworth WP, Grogan G. Preparative-Scale Biocatalytic Oxygenation of N-Heterocycles with a Lyophilized Peroxygenase Catalyst. Angew Chem Int Ed Engl 2023; 62:e202214759. [PMID: 36453718 PMCID: PMC10107140 DOI: 10.1002/anie.202214759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
A lyophilized preparation of an unspecific peroxygenase variant from Agrocybe aegerita (rAaeUPO-PaDa-I-H) is a highly effective catalyst for the oxygenation of a diverse range of N-heterocyclic compounds. Scalable biocatalytic oxygenations (27 preparative examples, ca. 100 mg scale) have been developed across a wide range of substrates, including alkyl pyridines, bicyclic N-heterocycles and indoles. H2 O2 is the only stoichiometric oxidant needed, without auxiliary electron transport proteins, which is key to the practicality of the method. Reaction outcomes can be altered depending on whether hydrogen peroxide was delivered by syringe pump or through in situ generation using an alcohol oxidase from Pichia pastoris (PpAOX) and methanol as a co-substrate. Good synthetic yields (up to 84 %), regioselectivity and enantioselectivity (up to 99 % ee) were observed in some cases, highlighting the promise of UPOs as practical, versatile and scalable oxygenation biocatalysts.
Collapse
Affiliation(s)
- Balázs Pogrányi
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Tamara Mielke
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Alba Díaz‐Rodríguez
- GSK Medicines Research CentreGunnels Wood RoadStevenageHertfordshire, SG1 2NYUK
| | - Jared Cartwright
- Department of BiologyUniversity of YorkHeslington YorkYO10 5DDUK
| | | | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| |
Collapse
|
4
|
Deng GZ, Zhou X, Yu QX, Mou XQ, An M, Cui HB, Zhou XJ, Wan NW, Li Z, Chen YZ. Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral β-Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Zhong Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Quan-Xiang Yu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
5
|
El Kharrat S, Laurent P, Boiteau L. Diastereoselective Synthesis of Perfluoroalkylmethyl‐Substituted 1,2,3,4‐Tetrahydroquinolines Derivatives through 1‐Iodo‐1,3‐Bis(acetoxy) Synthons. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Salem El Kharrat
- Universite Saint-Joseph Faculte de pharmacie Faculty of Pharmacy Rue de Damas 1107 2180 Beirut LEBANON
| | - Philippe Laurent
- Université de Montpellier: Universite de Montpellier Institut des Biomolecules Max Mousseron 1919 route de Mende 34293 Montpellier FRANCE
| | - Laurent Boiteau
- University of Montpellier: Universite de Montpellier IBMM FRANCE
| |
Collapse
|
6
|
Wang Z, Zhao L, Mou X, Chen Y. Enzymatic approaches to site-selective oxidation of quinoline and derivatives. Org Biomol Chem 2022; 20:2580-2600. [PMID: 35290426 DOI: 10.1039/d2ob00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-mediated oxidation has been a green and efficient strategy for preparation of derivative chemicals from quinoline and its structural analogues. Herein, we report the progress made to date in enzymatic methods to oxidation of the pyridine moieties of quinoline and its structural analogues 1,2,3,4-tetrahydroquinoline, isoquinoline and 1,2,3,4-tetrahydroisoquinoline, including whole cell- and isolated enzyme-based transformations. In addition, methods to tune the site selectivity of the course of enzymatic transformation are also addressed, in particular the protein engineering approaches.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Xueqing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| |
Collapse
|
7
|
He B, Phansavath P, Ratovelomanana-Vidal V. Kinetic resolution of 2-aryl-2,3-dihydroquinolin-4(1 H)-one derivatives by rhodium-catalysed asymmetric transfer hydrogenation. Org Chem Front 2021. [DOI: 10.1039/d1qo00141h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient rhodium-catalysed kinetic resolution of 2-aryl-2,3-dihydroquinolin-4(1H)-one derivatives through asymmetric transfer hydrogenation.
Collapse
Affiliation(s)
- Bin He
- PSL University
- Chimie ParisTech
- CNRS UMR 8060
- Institute of Chemistry for Life and Health Sciences
- CSB2D Team
| | - Phannarath Phansavath
- PSL University
- Chimie ParisTech
- CNRS UMR 8060
- Institute of Chemistry for Life and Health Sciences
- CSB2D Team
| | | |
Collapse
|
8
|
Jadhav S, Farooqui M, Chavan P, Hussain S, Rai M. ZnFe2O4 Nano-Catalyzed One-Pot Multi-Component Synthesis of Substituted Tetrahydropyranoquinoline under Neat Ultrasonic Irradiation. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1825005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shivaji Jadhav
- Department of Chemistry, Tarai College of Arts and Science, Paithan, Aurangabad, Maharashtra, India
| | - Mazahar Farooqui
- P.G. Higher Learning and Research Institute, Maulana Azad College, Aurangabad, Maharashtra, India
| | - Pravin Chavan
- Department of Chemistry, Doshi Vakil College, Goregaon, Raigad, Maharashtra, India
| | - Sayyed Hussain
- Department of Chemistry, Sir Sayyed College, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
9
|
Xu-Xu QF, Zhang X, You SL. Enantioselective Synthesis of 4-Allyl Tetrahydroquinolines via Copper(I) Hydride-Catalyzed Hydroallylation of 1,2-Dihydroquinolines. Org Lett 2020; 22:1530-1534. [PMID: 32009411 DOI: 10.1021/acs.orglett.0c00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CuCl/(R,R)-Ph-BPE-catalyzed asymmetric hydroallylation of 1,2-dihydroquinolines, prepared from readily available quinolines, was developed. The optically active tetrahydroquinolines (THQs) bearing an allylic functionality at position 4 were obtained in good yields and excellent enantioselectivity. The introduced allylic groups are amenable to diverse transformations, thus offering chances to rapidly expand the THQ libraries.
Collapse
Affiliation(s)
- Qing-Feng Xu-Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
10
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
11
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|