1
|
Santra S, Molla MR. Small molecule-based core and shell cross-linked nanoassemblies: from self-assembly and programmed disassembly to biological applications. Chem Commun (Camb) 2024; 60:12101-12117. [PMID: 39301871 DOI: 10.1039/d4cc03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Supramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability. We highlight their potential biomedical applications, particularly in drug or gene delivery, and cell imaging. This feature article offers a comprehensive overview of the recent developments in the application of small molecule-based covalently cross-linked nanocarriers for materials and biomedical applications, which may inspire the use of these materials as a potential drug delivery system for future chemotherapeutic applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Wang Y, Xie F, Zhao L. Spatially Confined Nanoreactors Designed for Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310331. [PMID: 38183369 DOI: 10.1002/smll.202310331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Indexed: 01/08/2024]
Abstract
The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.
Collapse
Affiliation(s)
- Yating Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
3
|
Garrett P, Baiz CR. Hidden Beneath the Layers: Extending the Core/Shell Model of Reverse Micelles. J Phys Chem B 2023; 127:9399-9404. [PMID: 37870992 DOI: 10.1021/acs.jpcb.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Reverse micelles (RMs) provide a unique and highly tunable model system to study water in confined environments. The complex properties of water within RMs arise from the disruption of extended hydrogen bond (H-bond) networks that mediate local and long-range dynamics in bulk aqueous systems. Modulating the water pool size influences its H-bond dynamics, with smaller RMs increasingly restricting the H-bond network rearrangements leading to slower dynamics; however, within small confined systems, the dynamics of the surfactants also influence the water dynamics. Using ultrafast two-dimensional infrared spectroscopy, we investigate the effects of RM size on the surfactant headgroup rotamer populations and picosecond interfacial H-bond dynamics of aerosol-OT surfactants. We find that the increased water penetration accelerates H-bond dynamics, with larger RMs showing faster dynamics. These results imply that the changes in the RM structure alter the physical structure of the RM interface and thus alter the solvation dynamics. The findings in this study can be used for developing models for structure-specific solvation dynamics that account for the surfactant packing and hydration at the interface.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
5
|
Wang J, Cheng J, Tu K, Wang Y, Yu Q, Zhang L, Cheng Z. Fluorinated reversed micelles by polymerization-induced self-assembly with main-chain-type semifluorinated alternating copolymer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
A Review of Polymeric Micelles and Their Applications. Polymers (Basel) 2022; 14:polym14122510. [PMID: 35746086 PMCID: PMC9230755 DOI: 10.3390/polym14122510] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
Self-assembly of amphiphilic polymers with hydrophilic and hydrophobic units results in micelles (polymeric nanoparticles), where polymer concentrations are above critical micelle concentrations (CMCs). Recently, micelles with metal nanoparticles (MNPs) have been utilized in many bio-applications because of their excellent biocompatibility, pharmacokinetics, adhesion to biosurfaces, targetability, and longevity. The size of the micelles is in the range of 10 to 100 nm, and different shapes of micelles have been developed for applications. Micelles have been focused recently on bio-applications because of their unique properties, size, shape, and biocompatibility, which enhance drug loading and target release in a controlled manner. This review focused on how CMC has been calculated using various techniques. Further, micelle importance is explained briefly, different types and shapes of micelles are discussed, and further extensions for the application of micelles are addressed. In the summary and outlook, points that need focus in future research on micelles are discussed. This will help researchers in the development of micelles for different applications.
Collapse
|
7
|
Garrett P, Baiz CR. Dynamic effect of polymers at the surfactant-water interface: an ultrafast study. SOFT MATTER 2022; 18:1793-1800. [PMID: 35170620 DOI: 10.1039/d1sm01651b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfaces play a role in controlling the rates and outcomes of chemical processes. Characterizing the interactions at heterogeneous interfaces is critical to developing a comprehensive model of the role of interfaces and confinement in modulating chemical reactions. Reverse micelles are an ideal model system for exploring the effect of encapsulated species on interfacial environments. Here, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics (MD) simulations to characterize the picosecond interfacial dynamics in reverse micelles (RMs) containing acrylamide monomers and polyacrylamide polymers within the aqueous phase. The ester carbonyl vibrations of the sorbitan monostearate surfactants are examined to extract interfacial hydrogen-bonding populations and dynamics. Hydrogen bond populations at the ester carbonyl positions remain unchanged with the inclusion of either polymer or monomer species. Hydrogen-bond dynamics are not altered with the addition of monomer but are slowed down twofold in the presence of encapsulated polyacrylamide polymer species as a result of polymer chains partially localizing to the interface. These findings imply that kinetics of reactions that occur at interfaces or in confined environments could be modulated by interfacial localization of the different components.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
9
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
10
|
Swaidan A, Ghayyem S, Barras A, Addad A, Szunerits S, Boukherroub R. Enhanced Antibacterial Activity of CuS-BSA/Lysozyme under Near Infrared Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2156. [PMID: 34578471 PMCID: PMC8467990 DOI: 10.3390/nano11092156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
The synthesis of multifunctional photothermal nanoagents for antibiotic loading and release remains a challenging task in nanomedicine. Herein, we investigated a simple, low-cost strategy for the preparation of CuS-BSA nanoparticles (NPs) loaded with a natural enzyme, lysozyme, as an antibacterial drug model under physiological conditions. The successful development of CuS-BSA NPs was confirmed by various characterization tools such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lysozyme loading onto CuS-BSA NPs was evaluated by UV/vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), zeta potential, and dynamic light scattering measurements. The CuS-BSA/lysozyme nanocomposite was investigated as an effective means for bacterial elimination of B. subtilis (Gram-positive) and E. coli (Gram-negative), owing to the combined photothermal heating performance of CuS-BSA and lysozyme release under 980 nm (0.7 W cm-2) illumination, which enhances the antibiotic action of the enzyme. Besides the photothermal properties, CuS-BSA/lysozyme nanocomposite possesses photodynamic activity induced by NIR illumination, which further improves its bacterial killing efficiency. The biocompatibility of CuS-BSA and CuS-BSA/Lysozyme was elicited in vitro on HeLa and U-87 MG cancer cell lines, and immortalized human hepatocyte (IHH) cell line. Considering these advantages, CuS-BSA NPs can be used as a suitable drug carrier and hold promise to overcome the limitations of traditional antibiotic therapy.
Collapse
Affiliation(s)
- Abir Swaidan
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- LEADDER, Laboratoire des Etudes Appliquées au Développement Durable et Energie Renouvelable, Lebanese University, Hadath 1417614411, Lebanon
| | - Sena Ghayyem
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Alexandre Barras
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Ahmed Addad
- CNRS, UMR 8207—UMET, University of Lille, F-59000 Lille, France;
| | - Sabine Szunerits
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Rabah Boukherroub
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| |
Collapse
|
11
|
Small-angle X-ray scattering as an effective tool to understand the structure and rigidity of the reverse micelles with the variation of surfactant. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes (Basel) 2021. [DOI: 10.3390/pr9020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents an overview of the principal structural and dynamics characteristics of reverse micelles (RMs) in order to highlight their structural flexibility and versatility, along with the possibility to modulate their parameters in a controlled manner. The multifunctionality in a large range of different scientific fields is exemplified in two distinct directions: a theoretical model for mimicry of the biological microenvironment and practical application in the field of nanotechnology and nano-based sensors. RMs represent a convenient experimental approach that limits the drawbacks of the conventionally biological studies in vitro, while the particular structure confers them the status of simplified mimics of cells by reproducing a complex supramolecular organization in an artificial system. The biological relevance of RMs is discussed in some particular cases referring to confinement and a crowded environment, as well as the molecular dynamics of water and a cell membrane structure. The use of RMs in a range of applications seems to be more promising due to their structural and compositional flexibility, high efficiency, and selectivity. Advances in nanotechnology are based on developing new methods of nanomaterial synthesis and deposition. This review highlights the advantages of using RMs in the synthesis of nanoparticles with specific properties and in nano (bio)sensor design.
Collapse
|
13
|
Ghosh R, Malhotra M, Sathe RR, Jayakannan M. Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules 2020; 21:2896-2912. [PMID: 32539360 DOI: 10.1021/acs.biomac.0c00653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via electrostatic interaction to yield a new fluorescent theranostic nanoprobe to accomplish both therapeutics and diagnostics together in a single nanosystem. The theranostic NP was readily degradable by a bacteria-secreted lipase enzyme as well as by lysosomal esterase enzymes at the intracellular compartments in <12 h and support their suitability for biomedical application. In the absence of bactericidal activity, the theranostic nanoprobe functions exclusively as a biomarker to exhibit strong green-fluorescent signals in live E. coli. Once it became active, the theranostic probe induces membrane disruption on E. coli, which enabled the costaining of nuclei by red fluorescent propidium iodide. As a result, live and dead bacteria could be visualized via green and orange signals (merging of red+green), respectively, during the course of the antibacterial activity by the theranostic probe. This has enabled the development of a new image-based fluorescence assay to directly visualize and quantitatively estimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.
Collapse
|
14
|
Li B, Wu Y, Wang Y, Zhang M, Chen H, Li J, Liu R, Ding Y, Hu A. Light-Cross-linked Enediyne Small-Molecule Micelle-Based Drug-Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8896-8903. [PMID: 30730704 DOI: 10.1021/acsami.8b22516] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-cross-linked small-molecule micelles with enediyne units are designed for developing efficient drug-delivery systems. Gemcitabine (GEM) is chosen as a model hydrophilic drug and tethered with a maleimide-based enediyne (EDY) as a hydrophobic tail in the preparation of amphiphilic EDY-GEM. The stable micellar particles are obtained by cross-linking the enediyne moieties via photoinduced Bergman cyclization polymerization in aqueous media. The light-cross-linked spherical micelles with a size of 80 nm are characterized with dynamic light scattering and electron microscopy, showing robust micellar stability, bright fluorescent emission due to their intrinsic conjugated structure, and potential passive tumor-targeting ability through the enhanced permeability and retention effect. The drug-loaded micelles, as an example of light-cross-linked small-molecule micelle-based drug-delivery system, exhibit high drug-loading contents (50%) and greatly improved cytotoxicity toward A549 cells (decreasing the IC50 value of Gemcitabine by 10 times), thanks to the greatly increased cellular uptake of the drug-loaded micelles as confirmed by confocal laser scanning microscopy. The light-cross-linked enediyne-based small-molecule micelles system therefore provides a simple yet efficient drug-delivery platform for cancer chemotherapy.
Collapse
|
15
|
Dai Q, Zhao H, Cao H, Yang J, Zhao W, Wang T, Liu L, Fan Z, Wang G. Photo-triggered conversion of hydrophilic fluorescent biomimetic nanostructures for cell imaging. Chem Commun (Camb) 2019; 55:596-599. [PMID: 30480678 DOI: 10.1039/c8cc07197g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fluorescent nanoarchitectures, such as hydrophobic micelles and hydrophilic vesicles decorated with fluorescent carbon nanoparticles, were fabricated from one fatty acid by means of photo-triggering. The biomimetic nanostructures, like cell membrane structures, have applications in fluorescence imaging in both the cell cytoplasm and nucleus. Besides, hydrophobic micelles can be used as very stable fluorescent inks.
Collapse
Affiliation(s)
- Qin Dai
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15:1-18. [PMID: 30581608 PMCID: PMC6300464 DOI: 10.1016/j.jare.2018.06.005] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Sarwar Hossen
- Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.K. Basher
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.N.H. Mia
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.T. Rahman
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Jalal Uddin
- Department of Radio Sciences and Engineering, KwangWoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
17
|
Bonfield HE, Williams JD, Ooi WX, Leach SG, Kerr WJ, Edwards LJ. A Detailed Study of Irradiation Requirements Towards an Efficient Photochemical Wohl‐Ziegler Procedure in Flow. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Holly E. Bonfield
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - Jason D. Williams
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow, Scotland G1 1XL UK
| | - Wei Xiang Ooi
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - Stuart G. Leach
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - William J. Kerr
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow, Scotland G1 1XL UK
| | - Lee J. Edwards
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| |
Collapse
|
18
|
|