1
|
Arkhipova V, Fu H, Hoorens MWH, Trinco G, Lameijer LN, Marin E, Feringa BL, Poelarends GJ, Szymanski W, Slotboom DJ, Guskov A. Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue. J Am Chem Soc 2021; 143:1513-1520. [PMID: 33449695 PMCID: PMC7844824 DOI: 10.1021/jacs.0c11336] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Photopharmacology addresses the challenge of drug selectivity and
side effects through creation of photoresponsive molecules activated
with light with high spatiotemporal precision. This is achieved through
incorporation of molecular photoswitches and photocages into the pharmacophore.
However, the structural basis for the light-induced modulation of
inhibitory potency in general is still missing, which poses a major
design challenge for this emerging field of research. Here we solved
crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors—azobenzene
derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate.
The essential role of glutamate transporters in the functioning of
the central nervous system renders them potential therapeutic targets
in the treatment of neurodegenerative diseases. The obtained structures
provide a clear structural insight into the origins of photocontrol
in photopharmacology and lay the foundation for application of photocontrolled
ligands to study the transporter dynamics by using time-resolved X-ray
crystallography.
Collapse
Affiliation(s)
- Valentina Arkhipova
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mark W H Hoorens
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucien N Lameijer
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Egor Marin
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
2
|
Wang J, Qu S. Conformationally Sensitive Proximity Between the TM3-4 Loop and Hairpin Loop 2 of the Glutamate Transporter EAAT2 Revealed by Paired-Cysteine Mutagenesis. ACS Chem Neurosci 2021; 12:163-175. [PMID: 33315395 DOI: 10.1021/acschemneuro.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-β-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
3
|
Liu N, Jensen AA, Bunch L. β-Indolyloxy Functionalized Aspartate Analogs as Inhibitors of the Excitatory Amino Acid Transporters (EAATs). ACS Med Chem Lett 2020; 11:2212-2220. [PMID: 33214831 DOI: 10.1021/acsmedchemlett.0c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022] Open
Abstract
The excitatory amino acid transporters (EAATs) mediate uptake of the major excitatory neurotransmitter l-glutamate (Glu). The essential functions governed by these transporters in regulating the central Glu level make them interesting therapeutic targets in a wide range of neurodegenerative and psychiatric disorders. l-Aspartate (Asp), another EAAT substrate, has served as a privileged scaffold for the development of EAAT inhibitors. In this study, we designed and synthesized the first β-indolyloxy Asp analogs 15a-d with the aim to probe a hitherto unexplored adjacent pocket to the substrate binding site. The pharmacological properties of 15a-d were characterized at hEAAT1-3 and rEAAT4 in a conventional [3H]-d-Asp uptake assay. Notably, thiophene analog 15b and the para-trifluoromethyl phenyl analog 15d were found to be hEAAT1,2-preferring inhibitors exhibiting IC50 values in the high nanomolar range (0.21-0.71 μM) at these two transporters versus IC50 values in the low micromolar range at EAAT3,4 (1.6-8.9 μM). In summary, the results presented herein open up for further structure-activity relationship studies of this new scaffold.
Collapse
Affiliation(s)
- Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang J, Abidin MZ, Saravanan T, Poelarends GJ. Recent Applications of Carbon-Nitrogen Lyases in Asymmetric Synthesis of Noncanonical Amino Acids and Heterocyclic Compounds. Chembiochem 2020; 21:2733-2742. [PMID: 32315503 PMCID: PMC7586795 DOI: 10.1002/cbic.202000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Indexed: 12/04/2022]
Abstract
Carbon-nitrogen (C-N) lyases are enzymes that normally catalyze the cleavage of C-N bonds. Reversing this reaction towards carbon-nitrogen bond formation can be a powerful approach to prepare valuable compounds that could find applications in everyday life. This review focuses on recent (last five years) applications of native and engineered C-N lyases, either as stand-alone biocatalysts or as part of multienzymatic and chemoenzymatic cascades, in enantioselective synthesis of noncanonical amino acids and dinitrogen-fused heterocycles, which are useful tools for neurobiological research and important synthetic precursors to pharmaceuticals and food additives.
Collapse
Affiliation(s)
- Jielin Zhang
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningenThe Netherlands
- State Key Laboratory of Natural Medicines and Laboratory of Chemical BiologyChina Pharmaceutical University639 Longmian AvenueNanjing211198P. R. China
| | - Mohammad Z. Abidin
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningenThe Netherlands
- Department of Animal Product Technology, Faculty of Animal ScienceGadjah Mada University BulaksumurYogyakarta55281Indonesia
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningenThe Netherlands
- School of ChemistryUniversity of Hyderabad GachibowliHyderabad500046 TelanganaIndia
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningenThe Netherlands
| |
Collapse
|
5
|
Tang Z, Yang F, Dong Y, Ma C, Sun S, Shan Y, Zhang Y, Liu H. Midazolam contributes to neuroprotection against hypoxia/reoxygenation-induced brain injury in neonatal rats via regulation of EAAT2. Brain Res Bull 2020; 161:136-146. [DOI: 10.1016/j.brainresbull.2020.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
|
6
|
Moreira R, Taylor SD. Asymmetric Synthesis of Fmoc-Protected β-Hydroxy and β-Methoxy Amino Acids via a Sharpless Aminohydroxylation Reaction Using FmocNHCl. Org Lett 2018; 20:7717-7720. [PMID: 30480456 DOI: 10.1021/acs.orglett.8b03458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient asymmetric synthesis of l- threo-β-hydroxyasparagine and l- threo-β-methoxyaspartate that are suitably protected for Fmoc solid phase peptide synthesis is described. The key step in these syntheses was a Sharpless asymmetric aminohydroxylation reaction under basic conditions using N-chlorofluorenyl carbamate (FmocNHCl), a readily prepared and storable nitrogen source.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario Canada , N2L 3G1
| | - Scott D Taylor
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario Canada , N2L 3G1
| |
Collapse
|
7
|
Fu H, Zhang J, Tepper PG, Bunch L, Jensen AA, Poelarends GJ. Chemoenzymatic Synthesis and Pharmacological Characterization of Functionalized Aspartate Analogues As Novel Excitatory Amino Acid Transporter Inhibitors. J Med Chem 2018; 61:7741-7753. [PMID: 30011368 PMCID: PMC6139576 DOI: 10.1021/acs.jmedchem.8b00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Aspartate (Asp) derivatives are privileged
compounds for investigating
the roles governed by excitatory amino acid transporters (EAATs) in
glutamatergic neurotransmission. Here, we report the synthesis of
various Asp derivatives with (cyclo)alkyloxy and (hetero)aryloxy substituents
at C-3. Their pharmacological properties were characterized at the
EAAT1–4 subtypes. The l-threo-3-substituted
Asp derivatives 13a–e and 13g–k were nonsubstrate inhibitors, exhibiting pan
activity at EAAT1–4 with IC50 values ranging from
0.49 to 15 μM. Comparisons between (dl-threo)-19a–c and (dl-erythro)-19a–c Asp analogues
confirmed that the threo configuration is crucial
for the EAAT1–4 inhibitory activities. Analogues (3b–e) of l-TFB-TBOA (3a)
were shown to be potent EAAT1–4 inhibitors, with IC50 values ranging from 5 to 530 nM. Hybridization of the nonselective
EAAT inhibitor l-TBOA with EAAT2-selective inhibitor WAY-213613
or EAAT3-preferring inhibitor NBI-59159 yielded compounds 8 and 9, respectively, which were nonselective EAAT inhibitors
displaying considerably lower IC50 values at EAAT1–4
(11–140 nM) than those displayed by the respective parent molecules.
Collapse
Affiliation(s)
- Haigen Fu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Jielin Zhang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , DK-2100 Copenhagen OE , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , DK-2100 Copenhagen OE , Denmark
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|
8
|
|
9
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
10
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as macrophilone A from Macrorhynchia philippina.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|