1
|
Rana S, Shaw R, Pratap R. Influence of steric hindrance on the 1,4- versus 1,6-Michael addition: synthesis of furans and pentasubstituted benzenes. Org Biomol Chem 2024; 22:5361-5373. [PMID: 38869426 DOI: 10.1039/d4ob00686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
We described the influence of steric hindrance on the 1,4- versus 1,6-Michael addition reaction on 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles. An efficient and direct synthesis of trisubstituted furans was achieved through the reaction of 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles and acetone under mild conditions in good to moderate yield by the 1,4-Michael addition. Further exploration of the reaction with a sterically hindered aryl group containing 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles afforded biaryls by an in situ generated nucleophile through the 1,6-Michael addition. The synthetic utility of furan is further explored. These precursors are easily accessible from aryl methyl ketones. Various functional groups like alkyl, aryl, nitrile, amine, aroyl, and thiomethyl can be directly installed in the benzene and furan rings. A one-pot approach for the construction of a benzene nucleus was also developed. The structure of two compounds was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Shally Rana
- Department of Chemistry, University of Delhi, North Campus, Delhi-110007, India.
- Department of Chemistry, School of Science Indrashil University, Rajpur, Kadi, Ahmedabad-Mehsana Highway, Gujarat, 382740, India
| | - Ranjay Shaw
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi-110007, India.
| |
Collapse
|
2
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG. Friedel-Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Org Biomol Chem 2023; 21:365-369. [PMID: 36512428 DOI: 10.1039/d2ob02214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A versatile, inexpensive and sustainable protocol for the preparation of valuable bis-indolyl methanes via visible light-mediated, metal-free Friedel-Crafts arylation has been developed. The procedure, that exploits the peculiar behavior of arylazo sulfones as non-ionic photoacid generators (PAGs), was applied to the conversion of a variety of aliphatic and aromatic aldehydes into diarylmethanes in good to highly satisfactory yields, employing a low-catalyst loading (0.5 mol%) and irradiation at 456 nm.
Collapse
Affiliation(s)
- Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
4
|
Lichte D, Pirkl N, Heinrich G, Dutta S, Goebel JF, Koley D, Gooßen LJ. Palladium-Catalyzed para-C-H Arylation of Anilines with Aromatic Halides. Angew Chem Int Ed Engl 2022; 61:e202210009. [PMID: 36112053 PMCID: PMC9828783 DOI: 10.1002/anie.202210009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/12/2023]
Abstract
Controlling regioselectivity in C-H functionalizations is a key challenge in chemical method development. In arenes, functionalizations are most difficult to direct towards the C-H group furthest away from a substituent, in its para position. We herein demonstrate how the para-C-H arylation of anilines with non-activated aryl halides, elusive to date, is achieved by a base-assisted "metalla-tautomerism" approach. A proton is abstracted from the aniline substrate and replaced by an arylpalladium species, generated from the aryl halide coupling partner. In this step, the palladium is directed away from the N- to the tautomeric para-C-H position by a large phosphine ligand combined with a triphenylmethyl shielding group. The triphenylmethyl group is easily installed and removed, and can be recycled.
Collapse
Affiliation(s)
- Dominik Lichte
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Nico Pirkl
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Gregor Heinrich
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sayan Dutta
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)Kolkata, Mohanpur 741 246India
| | - Jonas F. Goebel
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Debasis Koley
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)Kolkata, Mohanpur 741 246India
| | - Lukas J. Gooßen
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
5
|
Lehr M, Neumann T, Näther C, McConnell AJ. M-CPOnes: transition metal complexes with cyclopropenone-based ligands for light-triggered carbon monoxide release. Dalton Trans 2022; 51:6936-6943. [PMID: 35448899 DOI: 10.1039/d2dt00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of CO-releasing molecules, M-CPOnes, was prepared combining cyclopropenone-based ligands for CO release with the modular scaffold of transition metal complexes. In proof-of-concept studies, M-CPOnes based on ZnII, FeII and CoII are stable in the dark but undergo light-triggered CO release with the cyclopropenone substituents and metal ions enabling tuning of the photophysical properties. Furthermore, the choice of metal allows the use of different spectroscopic methods to monitor photodecarbonylation from fluorescence spectroscopy to UV/vis spectroscopy and paramagnetic NMR spectroscopy. The modularity of M-CPOnes from the metal ion to the cyclopropenone substitution and potential for further functionalisation of the ligand make M-CPOnes appealing for tailored functionality in applications.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Tjorge Neumann
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| |
Collapse
|
6
|
Nguyen HT, Le N, Kawazoe Y, Pham‐Tran N, Tran PH. Intermolecular and Intramolecular Friedel‐Crafts Acylation of Carboxylic Acids using Binary Ionic Liquids: An Experimental and Computational Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202103708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai Truong Nguyen
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Nghia Le
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Institute for Computational Science and Technology (ICST) Quang Trung Software City Ho Chi Minh City Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center Tohoku University Sendai 980–8579 Japan
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203, <countryPart/ Tamil Nadu India
- School of Physics Suranaree University of Technology 111 University venue Muang Nakhon Ratchasima 30000 Thailand
| | - Nguyen‐Nguyen Pham‐Tran
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Institute for Computational Science and Technology (ICST) Quang Trung Software City Ho Chi Minh City Vietnam
| | - Phuong Hoang Tran
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Du L, Gong Y, Han J, Xin X, Luo H, Tian Y, Li Y, Li B. Cascade 8π Electrocyclization/Benzannulation to Access Highly Substituted Phenylpyridines. Org Lett 2021; 23:7966-7971. [PMID: 34617768 DOI: 10.1021/acs.orglett.1c02968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cascade 8π electrocyclization/benzannulation reaction was developed to obtain the synthetically important highly substituted phenyl-pyridines. This method shows great potential in the rapid and inexpensive application of the scalable and operationally simple production of accessible substrates. On the basis of the resulting phenyl-pyridine products, a new Ru catalyst and bidentate ligand were designed and prepared, further demonstrating its high practicability.
Collapse
Affiliation(s)
- Luan Du
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yiliang Gong
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jingpeng Han
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Xiaolan Xin
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - You Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| |
Collapse
|
8
|
Muthukuru P, P. K, Rayadurgam J, Rajasekhara Reddy S. Naturally derived sugar-based ionic liquids: an emerging tool for sustainable organic synthesis and chiral recognition. NEW J CHEM 2021. [DOI: 10.1039/d1nj03914h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past decade, the synthesis of sugar-based ionic liquids (SILs) from natural sugars has been described as a promising strategy.
Collapse
Affiliation(s)
- Priyanka Muthukuru
- Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014, India
| | - Krishnaraj P.
- Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014, India
| | | | | |
Collapse
|
9
|
Boualia I, Debache A, Boulcina R, Roisnel T, Berrée F, Vidal J, Carboni B. Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Thirupataiah B, Reddy GS, Ghule SS, Kumar JS, Mounika G, Hossain KA, Mudgal J, Mathew JE, Shenoy GG, Parsa KVL, Pal M. Synthesis of 11,12-dihydro benzo[c]phenanthridines via a Pd-catalyzed unusual construction of isocoumarin ring/FeCl 3-mediated intramolecular arene-allyl cyclization: First identification of a benzo[c]phenanthridine based PDE4 inhibitor. Bioorg Chem 2020; 97:103691. [PMID: 32143019 DOI: 10.1016/j.bioorg.2020.103691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/09/2019] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
In spite of their various pharmacological properties the anti-inflammatory potential of benzo[c]phenanthridines remained underexplored. Thus, for the first time PDE4 inhibitory potential of 11,12-dihydro benzo[c]phenanthridine/benzo[c]phenanthridine was assessed in vitro. Elegant synthesis of these compounds was performed via a multi-step sequence consisting of a Pd-catalyzed unusual construction of 4-allyl isocoumarin ring and FeCl3-mediated intramolecular regio- as well as site-selective arene-allyl cyclization as key steps. The overall strategy involved Sonogashira coupling followed by isocoumarin and isoquinolone synthesis, then chlorination and subsequent cyclization to afford a range of 11,12-dihydro derivatives. One of these dihydro compounds was converted to the corresponding benzo[c]phenanthridine that showed concentration dependent inhibition of PDE4B affording an initial hit molecule. The SAR study suggested that 11,12-dihydro analogs were less potent than the compound having unsaturation at the same part of the ring.
Collapse
Affiliation(s)
- B Thirupataiah
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Gangireddy Sujeevan Reddy
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Shailendra S Ghule
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Jetta Sandeep Kumar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Guntipally Mounika
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Kazi Amirul Hossain
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Jayesh Mudgal
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Jessy E Mathew
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Gautham G Shenoy
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kishore V L Parsa
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
11
|
Jia Q, Lan Y, Ye X, Lin Y, Ren Q. Direct access to multi-functionalized benzenes via [4 + 2] annulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes. RSC Adv 2020; 10:29171-29174. [PMID: 35521133 PMCID: PMC9055964 DOI: 10.1039/d0ra05251e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield). An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield).![]()
Collapse
Affiliation(s)
- Qianfa Jia
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Yunfei Lan
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xin Ye
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yinhe Lin
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Qiao Ren
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
12
|
Novel Aryl-Imidazolium Ionic Liquids with Dual Brønsted/Lewis Acidity as Both Solvents and Catalysts for Friedel–Crafts Alkylation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unique tunable aryl-imidazolium magnetic ionic liquids with dual functions as a solvent–catalyst and dual Brønsted–Lewis acidity (B-L MILs) are applied for Friedel–Crafts alkylation without additional solvents. The catalytic properties of these B-L MILs in the Friedel–Crafts alkylation of p-xylene with benzyl chloride are investigated. The various reaction parameters, including the catalyst dosage, reaction time, reaction temperature, molar ratio of reactants, and reusability, are discussed. The results show that the B-L MIL 5c has more excellent product selectivity (>99%) and reactant conversion (>99%) under the following optimum conditions (reaction temperature = 80 °C, reaction time = 0.5 h, molar ratio of p-xylene to benzyl chloride = 6:1, and catalyst 5c dosage = 1.0 mole %) than traditional catalysts reported in the previous literature. Specifically, due to the mesomeric effect between the FeCl4 anion and hydrogen atom at cationic moiety, the catalyst B-L MILs with the molar fraction of FeCl3 equal to 0.5 can be easily recovered and provide satisfactory catalytic activity after being re-used six times.
Collapse
|
13
|
Jung S, Lee H, Moon Y, Jung HY, Hong S. Site-Selective C–H Acylation of Pyridinium Derivatives by Photoredox Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03367] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyeonyeong Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yonghoon Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hoi-Yun Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
14
|
Akhmetov V, Feofanov M, Papaianina O, Troyanov S, Amsharov K. Towards Nonalternant Nanographenes through Self-Promoted Intramolecular Indenoannulation Cascade by C-F Bond Activation. Chemistry 2019; 25:11609-11613. [PMID: 31301175 DOI: 10.1002/chem.201902586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Large polycyclic aromatic hydrocarbons (PAHs) containing pentagons represent an important class of compounds that are considered to be superior materials in future nano-electronic applications. From this perspective, the development of synthetic approaches to large PAHs and nanographenes (NGs) is a matter of great importance. In this context indenoannulation appears to be the most practical way to introduce pentagons into NGs. Here we report that alumina-mediated C-F bond activation is an attractive tool for the synthesis of non-alternant NGs bearing several pentagons. The unique nature of the reaction leads to a rather counter-intuitive outcome and allows considering each previous aryl-aryl coupling as a promoter of the following one, despite the continuous increase in the strain energy. Thus, the presented strategy combines both facile synthesis and significant yields for large nonalternant PAHs and NGs.
Collapse
Affiliation(s)
- Vladimir Akhmetov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058, Erlangen, Germany
| | - Mikhail Feofanov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058, Erlangen, Germany
| | - Olena Papaianina
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058, Erlangen, Germany
| | - Sergey Troyanov
- Chemistry Department, Moscow State University, Leninskie gory, 119991, Moscow, Russia
| | - Konstantin Amsharov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Ren Z, Su L, Cai S, Lu W, Qiao Y, He P, Ding M. Synthesis of Polysubstituted Pyridine Derivatives via Sequential AlCl
3
‐Catalyzed Condensation/Aza‐Wittig/Isomerization Reactions and a Study of their Antifungal Activities. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science Xiangyang 441053, Hubei Province P. R. of China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of EducationCentral China Normal University Wuhan 430079 P. R. China
| | - Lei Su
- College of Chemical EngineeringHubei University of Arts and Science Xiangyang 441053, Hubei Province P. R. of China
| | - Shuang Cai
- College of Chemical EngineeringHubei University of Arts and Science Xiangyang 441053, Hubei Province P. R. of China
| | - Wen‐Ting Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of EducationCentral China Normal University Wuhan 430079 P. R. China
| | - Yue Qiao
- College of Chemical EngineeringHubei University of Arts and Science Xiangyang 441053, Hubei Province P. R. of China
| | - Ping He
- College of Chemical EngineeringHubei University of Arts and Science Xiangyang 441053, Hubei Province P. R. of China
| | - Ming‐Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of EducationCentral China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
16
|
Kawajiri T, Kato M, Nakata H, Goto R, Aibara SY, Ohta R, Fujioka H, Sajiki H, Sawama Y. Chemoselective Nucleophilic Functionalizations of Aromatic Aldehydes and Acetals via Pyridinium Salt Intermediates. J Org Chem 2019; 84:3853-3870. [DOI: 10.1021/acs.joc.8b02965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiro Kawajiri
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Maho Kato
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroki Nakata
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Ryota Goto
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Shin-yo Aibara
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Reiya Ohta
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiromichi Fujioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
17
|
Peng F, Zhao Q, Huang W, Liu SJ, Zhong YJ, Mao Q, Zhang N, He G, Han B. Amine-catalyzed and functional group-controlled chemo- and regioselective synthesis of multi-functionalized CF3-benzene via a metal-free process. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02694k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel strategy for the synthesis of CF3-containing multi-substituted benzenes with high chemo- and regioselectivities under metal-free and air-tolerant conditions was established.
Collapse
Affiliation(s)
- Fu Peng
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Nan Zhang
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Gu He
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
18
|
Tachallait H, Safir Filho M, Marzag H, Bougrin K, Demange L, Martin AR, Benhida R. A straightforward and versatile FeCl3 catalyzed Friedel–Crafts C-glycosylation process. Application to the synthesis of new functionalized C-nucleosides. NEW J CHEM 2019. [DOI: 10.1039/c8nj06300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid and straightforward access to C-nucleosides using an inexpensive FeCl3 catalyst.
Collapse
Affiliation(s)
- Hamza Tachallait
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Faculté des Sciences
- 1014 Rabat
- Morocco
| | - Mauro Safir Filho
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Hamid Marzag
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Faculté des Sciences
- 1014 Rabat
- Morocco
| | - Luc Demange
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Anthony R. Martin
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| | - Rachid Benhida
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR 7272
- 06108 Nice
- France
| |
Collapse
|
19
|
Hone CA, Boyd A, O'Kearney-McMullan A, Bourne RA, Muller FL. Definitive screening designs for multistep kinetic models in flow. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00180h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A definitive screening design (DSD) combined with reaction profiling was conducted using a flow reactor, in a short time frame, for the accurate estimation of kinetic parameters.
Collapse
Affiliation(s)
- Christopher A. Hone
- Institute of Process Research and Development (iPRD)
- School of Chemistry and School of Chemical and Process Engineering
- University of Leeds
- UK
| | | | | | - Richard A. Bourne
- Institute of Process Research and Development (iPRD)
- School of Chemistry and School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Frans L. Muller
- Institute of Process Research and Development (iPRD)
- School of Chemistry and School of Chemical and Process Engineering
- University of Leeds
- UK
| |
Collapse
|
20
|
Barman TR, Sutradhar M, Alegria ECBA, Guedes da Silva MFC, Kuznetsov ML, Pombeiro AJL. Efficient Solvent-Free Friedel-Crafts Benzoylation and Acylation of m
-Xylene Catalyzed by N
-Acetylpyrazine-2-carbohydrazide-Fe(III)-chloro Complexes. ChemistrySelect 2018. [DOI: 10.1002/slct.201801656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tannistha Roy Barman
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
| | - Manas Sutradhar
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
| | - Elisabete C. B. A. Alegria
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
- Chemical Engineering Departament; ISEL-Instituto Superior de Engenharia de Lisboa; Instituto Politécnico de Lisboa; 1959-007 Lisboa Portugal
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa, Av. Rovisco Pais; 1049-001 Lisboa Portugal
| |
Collapse
|
21
|
Wu J, Mou C, Chi YR. Construction of Multi-Substituted Benzenes via NHC-Catalyzed Reactions of Carboxylic Esters. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jichang Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education; Guizhou University, Huaxi District; Guiyang Guizhou 550025 China
| | - Chengli Mou
- School of Pharmacy; Guiyang College of Traditional Chinese Medicine, Huaxi District; Guiyang Guizhou 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education; Guizhou University, Huaxi District; Guiyang Guizhou 550025 China
| |
Collapse
|
22
|
Raţ CI, Soran A, Varga RA, Silvestru C. C–H Bond Activation Mediated by Inorganic and Organometallic Compounds of Main Group Metals. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|