1
|
Jatoth R, Gugulothu K, Ravi N, Gayathri R, Chandrakumar SP, Shiva Kumar K. TFA-promoted (hetero)arylation/hydroxylation of quinoxaline-2-one derivatives with electron-rich aromatic compounds. Org Biomol Chem 2024. [PMID: 39589367 DOI: 10.1039/d4ob00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A metal- and solvent-free, one-pot and TFA-promoted method for the construction of hetero/aryl-substituted quinoxalin-2-ones, pyrazin-2(1H)-ones, and pyrimidin-4(3H)-ones is reported. This method involves the reaction of chloro-derivatives of nitrogen heterocycles with electron-rich arenes/heteroarenes, followed by hydroxylation. This protocol is easy to use, providing access to (hetero)aryl-substituted N-heterocycles in good yields.
Collapse
Affiliation(s)
- Ramanna Jatoth
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | - Nidhi Ravi
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
| | - Ranamalla Gayathri
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
| | | | - K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
| |
Collapse
|
2
|
Liu SY, Fan L, Zhu ZQ, Shi F. Bro̷nsted Acid-Catalyzed Regioselective [5 + 1] Annulation for the Synthesis of Indole-Fused Dihydrochromanes. J Org Chem 2024; 89:16791-16803. [PMID: 39488851 DOI: 10.1021/acs.joc.4c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
A Bro̷nsted acid-catalyzed [5 + 1] annulation of 2-(1H-indol-2-yl)phenols, a class of indole-based 1,5-CO-synthons, with aldehydes has been established. By this approach, various indole-fused dihydrochromanes were synthesized in moderate to good yields (up to 99%) with excellent regioselectivities. Control experiments not only showed the H-bonding interaction between the NH group of the substrates─and the acid catalyst is vital to realize this transformation─but also indicated that an indolylmethanol-type intermediate was possibly formed via the first step of nucleophilic addition of indole C3-position to aldehydes during the reaction process. This reaction represents the first Bro̷nsted acid-catalyzed regioselective [5 + 1] annulation of 2-(1H-indol-2-yl)phenols and provides a novel strategy for constructing biologically intriguing indole-fused dihydrochromane skeletons in a highly regioselective manner.
Collapse
Affiliation(s)
- Si-Yi Liu
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Lu Fan
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Zi-Qi Zhu
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Dong K, Zhao YL, Jin XL, Liu Q. Indole-Fused Benzoxepine Synthesis via Visible-Light-Driven Aerobic Dehydrogenative [5 + 2] Annulation. Org Lett 2023; 25:8258-8262. [PMID: 37955358 DOI: 10.1021/acs.orglett.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A photocatalyzed oxidative dehydrogenative annulation between 2-(1H-indol-2-yl)phenols and alkenylphenols is presented. Various indole-fused benzoxepines can be obtained at room temperature using atom-efficient strategies. This method not only avoids the use of stoichiometric amounts of oxidants but also exhibits excellent atom economy by generating H2O as the only theoretical byproduct.
Collapse
Affiliation(s)
- Kui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lin Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Recent advances in transition metal-catalyzed reactions of chloroquinoxalines: Applications in bioorganic chemistry. Bioorg Chem 2022; 129:106195. [DOI: 10.1016/j.bioorg.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
5
|
Feng LS, Gao C, Liu FW, Wang XP, Zhang ZL. Recent updates on the anticancer activity of quinoxaline hybrids (Jan. 2017-Jan. 2022). Curr Top Med Chem 2022; 22:1426-1441. [DOI: 10.2174/1568026622666220428093955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer as one of the leading causes of death among non-communicable diseases has already posed a heavy burden on the world health system. Chemotherapy is one of the most effective approaches for cancer treatment, but multidrug resistance, lack of efficacy, and toxic side effects hamper efficacious cancer chemotherapy, creating an urgent need to develop novel, more effective and less toxic anticancer therapeutics. Quinoxalines as fascinating structures constitute an important class of heterocycles in drug discovery. Quinoxaline hybrids could exert anticancer activity through diverse mechanisms and possess profound in vitro and in vivo efficacy against various cancers including multidrug-resistant forms. Thus, quinoxaline hybrids represent useful templates for the control and eradication of cancer. The purpose of the present review article is to provide an emphasis on the recent developments (Jan. 2017-Jan. 2022) in quinoxaline hybrids with insights into their in vitro and in vivo anticancer potential as well as structure-activity relationships (SARs) to facilitate further rational design of more effective candidates.
Collapse
|
6
|
Li B, Chen C, Jia J, He L. Research progress on antineoplastic, antibacterial, and anti-inflammatory activities of seven-membered heterocyclic derivatives. Curr Med Chem 2022; 29:5076-5096. [PMID: 35345989 DOI: 10.2174/0929867329666220328123953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Seven-membered heterocyclic compounds are important drug scaffolds, because of their unique chemical structures. They widely exist in natural products and show a variety of biological activities. They have commonly been used in central nervous system drugs in the past 30 years. In the past decade, there are many studies on the activities of antitumor, antibacterial, etc. Herein, we summarize the research advances in different kinds of seven-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur heteroatoms with antitumor, antisepsis, and anti-inflammation activities in the past ten years, which is expected to be beneficial to the development and design of novel drugs for the corresponding indications.
Collapse
Affiliation(s)
- Bin Li
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Chen
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jingjing Jia
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling He
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Jatoth R, Naikawadi PK, Bhaskar B, Gugulothu K, Edukondalu P, Kumar KS. Metal‐Free TFA‐Promoted Regioselective (Hetero)Arylation: Synthesis of (Hetero)Aryl Substituted and Carbazole/Oxepine Fused
N
‐Heterocycles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramanna Jatoth
- Department of Chemistry Osmania University Hyderabad 500 007 India
| | | | | | - Kishan Gugulothu
- Department of Chemistry Osmania University Hyderabad 500 007 India
| | | | - K. Shiva Kumar
- Department of Chemistry Osmania University Hyderabad 500 007 India
| |
Collapse
|
8
|
Rafiee F, Hasani S. Exciting progress in the transition metal‐catalyzed synthesis of oxepines, benzoxepines, dibenzoxepines, and other derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Samira Hasani
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| |
Collapse
|
9
|
Qiu ZW, Li BQ, Liu HF, Zhu ZQ, Pan HP, Feng N, Ma AJ, Peng JB, Zhang XZ. Formal (3 + 4)-Annulation of Propargylic p-Quinone Methides with 2-Indolylmethanols: Synthesis of Polysubstituted Indole-Fused Oxepines. J Org Chem 2021; 86:7490-7499. [PMID: 34004118 DOI: 10.1021/acs.joc.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel Brønsted acid catalyzed 1,8-addition mediated (3 + 4)-annulation of in situ generated propargylic p-quinone methides with 2-indolylmethanols is described. This method provides a convenient and mild approach to structurally interesting and synthetically important polysubstituted indole-fused oxepines in high yields. Moreover, 2-indolylmethanols as four-atom synthons in the (3 + 4)-annulations under Brønsted acid conditions have been explored for the first time.
Collapse
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| |
Collapse
|
10
|
Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210104222338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven membered heterocyclic Azepine and its derivatives have great pharmacological
and therapeutic implications. In this review, the literature of the last fifty years has
been exploited for the synthesis, reaction, and biological properties of these seven-member
heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five
or six-membered compounds using various methods such as thermally, photo-chemically, and
microwave irradiation. The systematically designed schemes involve the synthesis of different
derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers.
However, there is much work yet to be done in the biological section, as it is not
explored and reported in the literature; therefore, N-containing seven-membered heterocycles
still have much scope for the researchers.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S. Malhi
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S. Sohal
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
11
|
Xia X, Zhao M, He W, Zou L, San X, Wang D. Metal‐Free Oxidative [5+1] Cyclization of 1,5‐Enynes for the Synthesis of Pyrazine 1‐Oxide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao‐Feng Xia
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Mingming Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Wei He
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Lianghua Zou
- School of Pharmaceutical SciencesJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xinxin San
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
12
|
Meesa SR, Naikawadi PK, Gugulothu K, Shiva Kumar K. Catalyst and solvent switched divergent C-H functionalization: oxidative annulation of N-aryl substituted quinazolin-4-amine with alkynes. Org Biomol Chem 2020; 18:3032-3037. [PMID: 32242597 DOI: 10.1039/d0ob00318b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of site-selective C-H functionalizations/annulations is one of the most challenging practices in synthetic organic chemistry particularly for substrates bearing several similarly reactive C-H bonds. Herein, we describe catalyst and solvent controlled ortho/peri site-selective oxidative annulation of C-H bonds of N-aryl substituted quinazolin-4-amines with internal alkynes. The ortho C-H selective annulation was observed using Pd-catalyst in DMF to give indole-quinazoline derivatives, while, Ru-catalyst in PEG-400 favoured the peri C-H bond annulation exclusively to furnish pyrido-quinazoline derivatives.
Collapse
Affiliation(s)
| | | | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | - K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| |
Collapse
|
13
|
Rajesham B, Arunkumar V, Naikawadi PK, Shiva Kumar K. Copper-catalyzed cascade C–N coupling/C–H amination: one pot synthesis of imidazo[1,2- b]indazole. NEW J CHEM 2020. [DOI: 10.1039/d0nj03022h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot, two-fold C–N bond formation protocol has been developed for the construction of imidazo[1,2-b]indazole derivatives.
Collapse
Affiliation(s)
| | | | | | - K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500 007
- India
| |
Collapse
|
14
|
Mahesh K, Ravi K, Rathod PK, Leelavathi P. Convenient synthesis of quinoline-fused triazolo-azepine/oxepine derivatives through Pd-catalyzed C–H functionalisation of triazoles. NEW J CHEM 2020. [DOI: 10.1039/c9nj05254b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The convenient synthesis of a novel polycyclic fused system comprising three different heterocycles, viz., quinolines, azepines/oxepines and triazoles is presented in high yields.
Collapse
Affiliation(s)
- Kukkamudi Mahesh
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Kanakaraju Ravi
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Praveen Kumar Rathod
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Panaganti Leelavathi
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| |
Collapse
|
15
|
Chirra S, Siliveri S, Gangalla R, Goskula S, Gujjula SR, Adepu AK, Anumula R, Sivasoorian SS, Wang LF, Narayanan V. Synthesis of new multivalent metal ion functionalized mesoporous silica and studies of their enhanced antimicrobial and cytotoxicity activities. J Mater Chem B 2019; 7:7235-7245. [PMID: 31664291 DOI: 10.1039/c9tb01736d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we have reported the synthesis of a transition metal (Me = Ti, V, and Pd) incorporated into MCM-41 mesoporous molecular sieves (Si/Me = 20) synthesized by the sol-gel method. Their physicochemical properties were studied in detail by standard techniques like low angle powder X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDXS), transmission electron microscopy (TEM), N2 adsorption/desorption studies, and thermogravimetric-differential thermal (TG-DTA) analysis and spectral studies like Fourier transform infrared spectroscopic analysis (FT-IR), diffuse reflectance ultraviolet-visible spectroscopic analysis (UV-Visible-DRS), and X-ray photoelectron spectroscopy (XPS). The XRD patterns prove that the material's phase identity is the same irrespective of metal incorporation. SEM displayed the uniform shape and size of the nanoparticles. The presence of elements such as Ti, V, Pd, Si and O in respective materials is revealed using the EDXS analysis. Around 30% weight loss arose upon calcination from room temperature to 800 °C. BET surface area analysis presented that the parent materials have a high surface area (1024 m2 g-1) which was reduced upon metal incorporation. FT-IR analysis exhibited the framework vibrations of the synthesised materials. UV-Visible-DRS analysis indicated the presence of tetrahedrally coordinated transition metal ions. The multivalent-metal-ion-functionalized mesoporous materials showed significant enhancement in potent antimicrobial and anticancer activity. The antimicrobial activity is because of its low lipophilicity, which no longer allows the materials to enter via the lipid membrane. Thus, the new materials neither obstruct the metal-binding sites nor inhibit the growth of microbe enzymes. Further, the results show that the transition metal ion-containing mesoporous materials possessing good anticancer activity arising from their excessive surface area to volume ratio provided appropriate association with a tumour cell due to the direct penetration of mesoporous materials into the cell wall, causing membrane damage and cell death.
Collapse
Affiliation(s)
- Suman Chirra
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India.
| | - Suresh Siliveri
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India.
| | - Ravi Gangalla
- Department of Microbiology, Kakatiya University, Warangal 506 009, Telangana, India
| | - Srinath Goskula
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India.
| | - Sripal Reddy Gujjula
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India.
| | - Ajay Kumar Adepu
- Inorganic & Physical Chemistry Division, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China
| | - Siva Sankari Sivasoorian
- Department of Medicinal & Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Venkatathri Narayanan
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India.
| |
Collapse
|
16
|
Shiva Kumar K, Naikawadi PK, Rajesham B, Rambabu D. Four-component, three-step cascade reaction: an effective synthesis of indazole-fused triazolo[5,1-c]quinoxalines. NEW J CHEM 2019. [DOI: 10.1039/c8nj06299d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient four-component, three-step cascade synthesis of indazole-fused triazolo[5,1-c]quinoxalines has been described. Notable features of this protocol include simple starting materials, reduced synthetic steps, and good yields.
Collapse
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500 007
- India
| | | | | | - D. Rambabu
- Department of Industrial and Engineering Chemistry
- Institute of Chemical Technology
- IOC-Bhubaneswar Campus
- Bhubaneswar-751013
- India
| |
Collapse
|
17
|
Kumar KS, Meesa SR, Naikawadi PK. Palladium-Catalyzed [2 + 2 + 2] Annulation via Transformations of Multiple C–H Bonds: One-Pot Synthesis of Diverse Indolo[3,2-a]carbazoles. Org Lett 2018; 20:6079-6083. [DOI: 10.1021/acs.orglett.8b02465] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India
| | | | | |
Collapse
|
18
|
Jia P, Huang Y. A Formal [5+1] Annulation Reaction of Sulfur Ylides and 2-(1H-indol-2-yl)phenols: Access to Indole-Fused 4H-benzo[e][1,3]oxazines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin People's Republic of China
| |
Collapse
|
19
|
Kumar KS, Rajesham B, Kumar NP, Ramulu MS, Dandela R. A Ligand/Additive/Base-Free C(sp2
)-H Activation and Isocyanide Insertion in PEG-400: Synthesis of Indolizine/Imidazoline-Fused Heterocycles. ChemistrySelect 2018. [DOI: 10.1002/slct.201800397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K. Shiva Kumar
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | - Bandari Rajesham
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | - N. Praveen Kumar
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | | | - Rambabu Dandela
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune-411008 India
| |
Collapse
|
20
|
Kumar KS, Ramulu MS, Kumar NP. Unexpected C–N bond formation via Smiles rearrangement: one pot synthesis of N-arylated coumarin/pyran derivatives. NEW J CHEM 2018. [DOI: 10.1039/c8nj02109k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conceptually new and one-pot method for the synthesis of N-arylated coumarin/pyran derivatives via Smiles rearrangement.
Collapse
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500 007
- India
| | | | | |
Collapse
|
21
|
Shiva Kumar K, Kumar NP, Rajesham B, Kishan G, Akula S, Kancha RK. Silver-catalyzed synthesis of pyrrolopiperazine fused with oxazine/imidazole via a domino approach: evaluation of anti-cancer activity. NEW J CHEM 2018. [DOI: 10.1039/c7nj03608f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag-Catalyzed synthesis of pyrrolopiperazine fused with oxazine/imidazole by the reaction of δ-alkynyl aldehydes and nucleophilic amines was performed. Several of these compounds were found to exhibit anti-cancer activity against cancer cell lines.
Collapse
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500007
- India
| | | | | | | | - Sravani Akula
- Molecular Medicine and Therapeutics Laboratory
- CPMB
- Osmania University
- Hyderabad-500007
- India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory
- CPMB
- Osmania University
- Hyderabad-500007
- India
| |
Collapse
|
22
|
|
23
|
Singh AK, Raj V, Saha S. Indole-fused azepines and analogues as anticancer lead molecules: Privileged findings and future directions. Eur J Med Chem 2017; 142:244-265. [PMID: 28803677 DOI: 10.1016/j.ejmech.2017.07.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
The search for new lead compounds of simple structure, displaying highest quality anti-tumor potency with new mechanisms of action and least adverse effects is the major intention of cancer drug discovery now a days. For the time being, indole-fused azepines emerged as a simple class of compounds prolifically designed with strong pharmacological significances in particular of cancer protecting ability. In the recent years from the efforts of our research group, indole-fused heteroazepines, a simple structural class achieved by fusion of indole with oxygen, sulphur and nitrogen containing heteroazepine rings, have known for its superior outcomes in cancer treatment. Surprisingly, the chemistry and biology of these unique families with an amazing role in cancer drug discovery has remained broadly unexplored. This short review is consequently an endeavor to highlight the preliminary ideas over this structural class and to draw the medical attention towards future development of indole-fused azepines and analogues for their promising function in cancer drug discovery.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|