1
|
Xiong F, Zhang JY, Du TT, Yang BB, Chen XG, Li L. Ultrasound-promoted specific chiroptical sensing of cysteine in aqueous solution and cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Mitra M, Mahapatra M, Dutta A, Deb M, Dutta S, Chattopadhyay PK, Roy S, Banerjee S, Sil PC, Singha NR. Fluorescent Guar Gum-g-Terpolymer via In Situ Acrylamido-Acid Fluorophore-Monomer in Cell Imaging, Pb(II) Sensor, and Security Ink. ACS APPLIED BIO MATERIALS 2020; 3:1995-2006. [PMID: 35025321 DOI: 10.1021/acsabm.9b01146] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal,India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
3
|
Mahapatra M, Dutta A, Roy JSD, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Multi‐C−C/C−N‐Coupled Light‐Emitting Aliphatic Terpolymers: N−H‐Functionalized Fluorophore Monomers and High‐Performance Applications. Chemistry 2019; 26:502-516. [PMID: 31599070 DOI: 10.1002/chem.201903935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Arnab Dutta
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Joy Sankar Deb Roy
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Ujjal Das
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Snehasis Banerjee
- Department of ChemistryGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Sanjit Dey
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Pijush Kanti Chattopadhyay
- Department of Leather TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Dilip K. Maiti
- Department of ChemistryUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Nayan Ranjan Singha
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| |
Collapse
|
4
|
Mahapatra M, Dutta A, Roy JSD, Mitra M, Mahalanobish S, Sanfui MDH, Banerjee S, Chattopadhyay PK, Sil PC, Singha NR. Fluorescent Terpolymers via In Situ Allocation of Aliphatic Fluorophore Monomers: Fe(III) Sensor, High-Performance Removals, and Bioimaging. Adv Healthc Mater 2019; 8:e1900980. [PMID: 31664786 DOI: 10.1002/adhm.201900980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/21/2019] [Indexed: 12/22/2022]
Abstract
Herein, purely aliphatic intrinsically fluorescent terpolymers, i.e., 1 and 2, are synthesized through one-pot solution polymerization via N-H functionalized and multi C-C/C-N coupled in situ protrusion of fluorescent monomers using two nonemissive monomers. These scalable terpolymers are suitable for highly selective Fe(III) sensing, high-performance exclusion of Fe(III), logic function and the imaging of normal mammalian Madin-Darby canine kidney and human osteosarcoma cancer cell lines. The structures of terpolymers, in situ attachment of fluorescent monomers, clusteroluminescence, adsorption-mechanism, and cell-imaging abilities are understood via unadsorbed and/or adsorbed microstructural analyses using 1 H/13 C NMR, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, atomic absorption spectroscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, dynamic light scattering, fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, location of fluorophores, and singlet-singlet absorption and emission of terpolymers are examined using density functional theory (DFT) and time-dependent DFT. For the precise identification of fluorophores, transition from occupied natural transition orbitals (NTOs) to unoccupied NTOs is computed. For 1/2, limit of detection (LOD) values and adsorption capacities are 6.0 × 10-7 /8.0 × 10-7 m and 147.82/120.56 mg g-1 at pHi = 7.0 and 303 K, respectively. The overall properties of 1 are more advantageous compared to 2 in sensing, cell imaging, and adsorptive exclusion of Fe(III).
Collapse
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Arnab Dutta
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Joy Sankar Deb Roy
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Madhushree Mitra
- Department of Leather TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Sushweta Mahalanobish
- Division of Molecular MedicineBose Institute P‐1/12, CIT Scheme VII M Kolkata 700054 West Bengal India
| | - MD Hussain Sanfui
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Snehasis Banerjee
- Department of ChemistryGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Pijush Kanti Chattopadhyay
- Department of Leather TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Parames C. Sil
- Division of Molecular MedicineBose Institute P‐1/12, CIT Scheme VII M Kolkata 700054 West Bengal India
| | - Nayan Ranjan Singha
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| |
Collapse
|
5
|
Li R, Huang X, Lu G, Feng C. A fluorescence and UV/vis absorption dual-signaling probe with aggregation-induced emission characteristics for specific detection of cysteine. RSC Adv 2018; 8:24346-24354. [PMID: 35539163 PMCID: PMC9082014 DOI: 10.1039/c8ra03756f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 11/22/2022] Open
Abstract
Biological thiols with similar structures, such as glutathione (GSH), N-acetyl-l-cysteine (NAC), homocysteine (Hcy) and cysteine (Cys), play important roles in human physiology and are associated with different diseases. Thus, the discrimination of these thiols is a great necessity for various biochemical investigations and the diagnosis of related diseases. Herein, we present a new dual-signaling probe consisting of a typical aggregation induced emission fluorogen of a tetraphenylethylene group and 2,4-dinitrobenzenesulfonyl moiety. The probe can be used to selectively and quantitatively detect Cys over a variety of bio-species, including GSH, NAC and Hcy, from both UV/vis absorption and fluorescence channels. The mechanism study showed that the fluorescence and UV/vis absorption were turned on as the probe undergoes displacement of the 2,4-dinitrobenzenesulfonyl group with Cys, where the UV/vis and fluorescence signals originate from the dinitrophenyl-containing compounds and aggregates of TPE-OH, respectively. In addition, the discrimination of Cys was achieved by more rapid intramolecular displacement of sulfur with the amino group of Cys than NAC, Hcy and GSH. Moreover, the probe shows ignorable cytotoxicity against HepG2 cells, which demonstrates the great potential of the probe in selectively detecting Cys in vivo. A dual-signaling of fluorescence and UV/vis absorption modes for selective and quantitative detection of cysteine over homocysteine, N-acetyl-l-cysteine and glutathione is developed on the basis of aggregation-induced emission (AIE) effect.![]()
Collapse
Affiliation(s)
- Ruru Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|