1
|
Chennapuram M, Yoshida Y, Endo T. Curing behavior and properties of epoxy monomers with ethylenediaminetetraacetic dianhydride. J Appl Polym Sci 2022. [DOI: 10.1002/app.51626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhu Chennapuram
- Molecular Engineering Institute Kyushu Institute of Technology Kitakyushu‐shi Japan
| | - Yoshiaki Yoshida
- Molecular Engineering Institute Kyushu Institute of Technology Kitakyushu‐shi Japan
- Faculty of Engineering, Department of Materials Science Kyushu Institute of Technology Kitakyushu‐shi Japan
| | - Takeshi Endo
- Molecular Engineering Institute Kyushu Institute of Technology Kitakyushu‐shi Japan
| |
Collapse
|
2
|
Wang C, Lin G, Shen Z, Wang R. Angiopep-2 as an Exogenous Chemical Exchange Saturation Transfer Contrast Agent in Diagnosis of Alzheimer's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7480519. [PMID: 35422975 PMCID: PMC9005290 DOI: 10.1155/2022/7480519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chemical exchange saturation transfer (CEST) is a novel imaging modality in clinical practice and scientific research. Angiopep-2 is an artificial peptide that can penetrate blood-brain barrier. The aim of this study was to explore the feasibility of Angiopep-2 serving as an exogenous CEST contrast. METHODS Phantoms of Angiopep-2 with different concentrations were prepared and then scanned using the 7.0T small animal MRI scanner. Different parameters including saturation powers and saturation duration were used to achieve the optimal CEST effect, and the optimal parameters were finally selected based on Z-spectra, asymmetric spectra, and phantom CEST imaging. CEST scanning of dimethyl sulfoxide (DMSO), the substance helping Angiopep-2 to be dissolved in water, was performed to exclude its contribution for the CEST effect. RESULTS A broad dip was observed from 2.5 to 3.5 ppm in the Z-spectra of Angiopep-2 phantoms. The most robust CEST was generated at 3.2 ppm when using formula (M -3.2ppm - M +3.2ppm)/M -3.2ppm. The CEST effect of Angiopep-2 was concentration dependent; the effect increased as the concentration increased. In addition, the CEST effect was more obvious as the saturation power increased and peaked at 5.5 µT, and the CEST effect increased as the saturation duration increased. DMSO showed nearly 0% of the CEST effect at 3.2 ppm. CONCLUSIONS Our results demonstrate that Angiopep-2 can act as an excellent exogenous CEST contrast. As it can penetrate blood-brain barrier and bind amyloid-β protein, amyloid-β targeting CEST, with Angiopep-2 as an exogenous contrast agent, can be potentially used as a novel imaging modality for early diagnosis of Alzheimer's disease. Collectively, Angiopep-2 may play a critical role in early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Chengguang Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Guisen Lin
- Department of Medical Imaging, 2nd Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Zhiwei Shen
- Philips Healthcare, Tianzhe Road 16, Chaoyang, Beijing 100600, China
| | - Runrun Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Tirukoti ND, Avram L, Haris T, Lerner B, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. Fast Ion-Chelate Dissociation Rate for In Vivo MRI of Labile Zinc with Frequency-Specific Encodability. J Am Chem Soc 2021; 143:11751-11758. [PMID: 34297566 PMCID: PMC8397314 DOI: 10.1021/jacs.1c05376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fast ion-chelate
dissociation rates and weak ion-chelate affinities
are desired kinetic and thermodynamic features for imaging probes
to allow reversible binding and to prevent deviation from basal ionic
levels. Nevertheless, such properties often result in poor readouts
upon ion binding, frequently result in low ion specificity, and do
not allow the detection of a wide range of concentrations. Herein,
we show the design, synthesis, characterization, and implementation
of a Zn2+-probe developed for MRI that possesses reversible
Zn2+-binding properties with a rapid dissociation rate
(koff = 845 ± 35 s–1) for the detection of a wide range of biologically relevant concentrations.
Benefiting from the implementation of chemical exchange saturation
transfer (CEST), which is here applied in the 19F-MRI framework
in an approach termed ion CEST (iCEST), we demonstrate the ability
to map labile Zn2+ with spectrally resolved specificity
and with no interference from competitive cations. Relying on fast koff rates for enhanced signal amplification,
the use of iCEST allowed the designed fluorinated chelate to experience
weak Zn2+-binding affinity (Kd at the mM range), but without compromising high cationic specificity,
which is demonstrated here for mapping the distribution of labile
Zn2+ in the hippocampal tissue of a live mouse. This strategy
for accelerating ion-chelate koff rates
for the enhancement of MRI signal amplifications without affecting
ion specificity could open new avenues for the design of additional
probes for other metal ions beyond zinc.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talia Haris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Shusterman‐Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche‐Arnon H, Cai X, Gibb BC, Bar‐Shir A. Single Fluorinated Agent for Multiplexed
19
F‐MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ronit Shusterman‐Krush
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nishanth D. Tirukoti
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Liat Avram
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Hyla Allouche‐Arnon
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Xiaoyang Cai
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Bruce C. Gibb
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Amnon Bar‐Shir
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
5
|
Shusterman-Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche-Arnon H, Cai X, Gibb BC, Bar-Shir A. Single Fluorinated Agent for Multiplexed 19 F-MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021; 60:15405-15411. [PMID: 33856080 DOI: 10.1002/anie.202100427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Indexed: 12/12/2022]
Abstract
The weak thermal polarization of nuclear spins limits the sensitivity of MRI, even for MR-sensitive nuclei as fluorine-19. Therefore, despite being the source of inspiration for the development of background-free MRI for various applications, including for multiplexed imaging, the inability to map very low concentrations of targets using 19 F-MRI raises the need to further enhance this platform's capabilities. Here, we employ the principles of CEST-MRI in 19 F-MRI to obtain a 900-fold signal amplification of a biocompatible fluorinated agent, which can be presented in a "multicolor" fashion. Capitalizing on the dynamic interactions in host-guest supramolecular assemblies in an approach termed GEST, we demonstrate that an inhalable fluorinated anesthetic can be used as a single 19 F-probe for the concurrent detection of micromolar levels of two targets, with potential in vivo translatability. Further extending GEST with new designs could expand the applicability of 19 F-MRI to the mapping of targets that have so-far remained non-detectable.
Collapse
Affiliation(s)
- Ronit Shusterman-Krush
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nishanth D Tirukoti
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Amnon Bar-Shir
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Malikidogo KP, Martin H, Bonnet CS. From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges. Pharmaceuticals (Basel) 2020; 13:E436. [PMID: 33266014 PMCID: PMC7760112 DOI: 10.3390/ph13120436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023] Open
Abstract
Zinc and copper are essential cations involved in numerous biological processes, and variations in their concentrations can cause diseases such as neurodegenerative diseases, diabetes and cancers. Hence, detection and quantification of these cations are of utmost importance for the early diagnosis of disease. Magnetic resonance imaging (MRI) responsive contrast agents (mainly Lanthanide(+III) complexes), relying on a change in the state of the MRI active part upon interaction with the cation of interest, e.g., switch ON/OFF or vice versa, have been successfully utilized to detect Zn2+ and are now being developed to detect Cu2+. These paramagnetic probes mainly exploit the relaxation-based properties (T1-based contrast agents), but also the paramagnetic induced hyperfine shift properties (paraCEST and parashift probes) of the contrast agents. The challenges encountered going from Zn2+ to Cu2+ detection will be stressed and discussed herein, mainly involving the selectivity of the probes for the cation to detect and their responsivity at physiologically relevant concentrations. Depending on the response mechanism, the use of fast-field cycling MRI seems promising to increase the detection field while keeping a good response. In vivo applications of cation responsive MRI probes are only in their infancy and the recent developments will be described, along with the associated quantification problems. In the case of relaxation agents, the presence of another method of local quantification, e.g., synchrotron X-Ray fluorescence, single-photon emission computed tomography (SPECT) or positron emission tomography (PET) techniques, or 19F MRI is required, each of which has its own advantages and disadvantages.
Collapse
Affiliation(s)
| | | | - Célia S. Bonnet
- Centre de Biophysique Moléculaire, Université d’Orléans, Rue Charles Sadron, F-45071 Orléans 2, France; (K.P.M.); (H.M.)
| |
Collapse
|
7
|
Wu L, Song Y, Li Z, Guo J, Yao X. Copper(II)‐Catalysed Aerobic Oxidative Coupling of Arylamines with Hexafluoroisopropanol: An Alternative Methodology for Constructing Fluorinated Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liangying Wu
- Department of Applied Chemistry, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016, People's Republic of China
| | - Yang Song
- Department of Applied Chemistry, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016, People's Republic of China
| | - Zhanchong Li
- Department of Applied Chemistry, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016, People's Republic of China
| | - Jiabao Guo
- Department of Applied Chemistry, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016, People's Republic of China
| | - Xiaoquan Yao
- Department of Applied Chemistry, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016, People's Republic of China
| |
Collapse
|
8
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
9
|
Couturaud B, Houston ZH, Cowin GJ, Prokeš I, Foster JC, Thurecht KJ, O’Reilly RK. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett 2019; 8:1479-1483. [PMID: 35651191 DOI: 10.1021/acsmacrolett.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A water-soluble fluorine magnetic resonance spectroscopy host-guest probe, P(HPA-co-AdamCF3A), was successfully constructed from the facile synthesis of a bifunctional monomer via a quantitative Passerini reaction. Supramolecular complexation with (2-hydroxypropyl)-β-cyclodextrin promoted a change in the chemical environment, leading to modulation of both the relaxation properties as well as chemical shift of the fluorine moieties. This change was used to probe the supramolecular interaction by 19F MRI spectroscopy and give insight into fluorine probe formulation. This work provides a fundamental basis for an 19F MR imaging tracer capable of assessing host-guest inclusion and a potential model to follow the fate of a drug delivery system in vivo.
Collapse
Affiliation(s)
- Benoit Couturaud
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
- Université Paris-Est, East Paris Institute of Chemistry & Materials Science (ICMPE), UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais, France
| | - Zachary H. Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gary J. Cowin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ivan Prokeš
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| |
Collapse
|
10
|
Cho MH, Shin SH, Park SH, Kadayakkara DK, Kim D, Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjug Chem 2019; 30:2502-2518. [DOI: 10.1021/acs.bioconjchem.9b00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mi Hyeon Cho
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Soo Hyun Shin
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Hyun Park
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Deepak Kana Kadayakkara
- Department of Medicine, Bridgeport Hospital−Yale New Haven Health, Bridgeport, Connecticut 06610, United States
| | - Daehong Kim
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| |
Collapse
|
11
|
Meng H, Wen L, Xu Z, Li Y, Hao J, Zhao Y. Nonafluoro-tert-butoxylation of Diaryliodonium Salts. Org Lett 2019; 21:5206-5210. [DOI: 10.1021/acs.orglett.9b01813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Meng
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Hao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem 2019; 11:1157-1175. [DOI: 10.4155/fmc-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons. In this review, we aim to give an overall description of fluorine incorporation in contrast agents for MRI. The different kinds of fluorinated probes such as perfluorocarbons, fluorinated dendrimers, polymers and paramagnetic probes will be described, as will their imaging applications such as chemical exchange saturation transfer (CEST) imaging, physico-chemical changes detection, drug delivery, cell tracking and inflammation or tumors detection.
Collapse
|
13
|
Abstract
GEST NMR provides dynamic information on host–guest systems. It allows signal amplification of low concentrated complexes, detection of intermolecular interactions and quantification of guest exchange rates.
Collapse
Affiliation(s)
- Liat Avram
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| | - Amnon Bar-Shir
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| |
Collapse
|
14
|
Zhao H, Zhao S, Li X, Deng Y, Jiang H, Zhang M. Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. Org Lett 2018; 21:218-222. [DOI: 10.1021/acs.orglett.8b03666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuo Zhao
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiu Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yinyue Deng
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Zn 2+ detection by MRI using Ln 3+ -based complexes: The central role of coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Bo S, Yuan Y, Chen Y, Yang Z, Chen S, Zhou X, Jiang ZX. In vivo drug tracking with 19F MRI at therapeutic dose. Chem Commun (Camb) 2018; 54:3875-3878. [PMID: 29594281 DOI: 10.1039/c7cc09898g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tracking drugs with 19F MRI would be beneficial for developing theranostics and optimizing drug therapy. To this end, a fluorinated dendritic amphiphile with high 19F MRI sensitivity and biocompatibility has been developed for 19F MRI tracking of doxorubicin (DOX)-loaded liposomes in mice, which may provide an effective platform to in vivo trace various drugs with 19F MRI.
Collapse
Affiliation(s)
- Shaowei Bo
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Domino K, Veryser C, Wahlqvist BA, Gaardbo C, Neumann KT, Daasbjerg K, De Borggraeve WM, Skrydstrup T. Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium-Catalyzed Carbonylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katrine Domino
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cedrick Veryser
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; 3001 Leuven Belgium
| | - Benjamin A. Wahlqvist
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Kim Daasbjerg
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; 3001 Leuven Belgium
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
19
|
Domino K, Veryser C, Wahlqvist BA, Gaardbo C, Neumann KT, Daasbjerg K, De Borggraeve WM, Skrydstrup T. Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium-Catalyzed Carbonylation. Angew Chem Int Ed Engl 2018; 57:6858-6862. [DOI: 10.1002/anie.201802647] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Katrine Domino
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cedrick Veryser
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; 3001 Leuven Belgium
| | - Benjamin A. Wahlqvist
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Kim Daasbjerg
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; 3001 Leuven Belgium
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|