1
|
Kanwal A, Afzal U, Zubair M, Imran M, Rasool N. Synthesis of anti-depressant molecules via metal-catalyzed reactions: a review. RSC Adv 2024; 14:6948-6971. [PMID: 38410364 PMCID: PMC10895647 DOI: 10.1039/d3ra06391g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Depression is one of the most mutilating conditions in the world today. It has been difficult to make advancements toward better, more effective therapies since the introduction of antidepressant medicines in the late 1950s. One important field of medicinal chemistry is the synthesis of antidepressant molecules through metal-catalyzed procedures. The important role that different transition metals, including iron, nickel, ruthenium, and others, serve as catalysts in the synthesis of antidepressants is examined in this review. Key structural motifs included in antidepressant drugs such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and others can be synthesized in a variety of effective ways using metal-catalyzed steps. This review examines current developments in the catalytic synthesis of antidepressants and their potential application over the previous thirteen years.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Uzma Afzal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Zubair
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| |
Collapse
|
2
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
3
|
Shrestha B, Rose BT, Olen CL, Roth A, Kwong AC, Wang Y, Denmark SE. A Unified Strategy for the Asymmetric Synthesis of Highly Substituted 1,2-Amino Alcohols Leading to Highly Substituted Bisoxazoline Ligands. J Org Chem 2021; 86:3490-3534. [PMID: 33539091 DOI: 10.1021/acs.joc.0c02899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general procedure for the asymmetric synthesis of highly substituted 1,2-amino alcohols in high yield and diastereoselectivity is described that uses organometallic additions of a wide range of nucleophiles to tert-butylsulfinimines as the key step. The addition of organolithium reagents to these imines follows a modified Davis model. The diastereoselectivity for this reaction depends significantly on both the nucleophile and electrophile. These highly substituted 1,2-amino alcohols are used to synthesize stereochemically diverse and structurally novel, polysubstituted 2,2'-methylene(bisoxazoline) ligands in high yields.
Collapse
Affiliation(s)
- Bijay Shrestha
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Brennan T Rose
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Casey L Olen
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Aaron Roth
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Adon C Kwong
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yang Wang
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Abstract
This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents.
Collapse
|
5
|
Wright SW, Simpson B, Chinigo G, Perry MA, Maguire RJ. Reduction of 2-hydroxy-3-arylmorpholines to 3-aryl morpholines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Pyser JB, Baker Dockrey SA, Benítez AR, Joyce LA, Wiscons RA, Smith JL, Narayan ARH. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc 2019; 141:18551-18559. [PMID: 31692339 PMCID: PMC7029798 DOI: 10.1021/jacs.9b09385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selective access to a targeted isomer is often critical in the synthesis of biologically active molecules. Whereas small-molecule reagents and catalysts often act with anticipated site- and stereoselectivity, this predictability does not extend to enzymes. Further, the lack of access to catalysts that provide complementary selectivity creates a challenge in the application of biocatalysis in synthesis. Here, we report an approach for accessing biocatalysts with complementary selectivity that is orthogonal to protein engineering. Through the use of a sequence similarity network (SSN), a number of sequences were selected, and the corresponding biocatalysts were evaluated for reactivity and selectivity. With a number of biocatalysts identified that operate with complementary site- and stereoselectivity, these catalysts were employed in the stereodivergent, chemoenzymatic synthesis of azaphilone natural products. Specifically, the first syntheses of trichoflectin, deflectin-1a, and lunatoic acid A were achieved. In addition, chemoenzymatic syntheses of these azaphilones supplied enantioenriched material for reassignment of the absolute configuration of trichoflectin and deflectin-1a based on optical rotation, CD spectra, and X-ray crystallography.
Collapse
Affiliation(s)
- Joshua B. Pyser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Summer A. Baker Dockrey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Leo A. Joyce
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065
| | - Ren A. Wiscons
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Jun H, Yu ML, Ko SY. Synthesis of (S,S
)-Reboxetine. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyeyeon Jun
- Department of Chemistry; Ewha Womans University; Seoul 03760 South Korea
| | - Min Lee Yu
- Department of Chemistry; Ewha Womans University; Seoul 03760 South Korea
| | - Soo Y. Ko
- Department of Chemistry; Ewha Womans University; Seoul 03760 South Korea
| |
Collapse
|
8
|
Garg Y, Kaur R, Kumar Pandey S. Organocatalytic Asymmetric Tandem α-Aminooxylation-Henry Reactions for the Synthesis of 1,2-Diols: Total Synthesis of (-)-l-threo-Sphinganine. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuvraj Garg
- School of Chemistry and Biochemistry; Thapar University; -147001 Patiala India
| | - Ramandeep Kaur
- School of Chemistry and Biochemistry; Thapar University; -147001 Patiala India
| | | |
Collapse
|
9
|
Shahzad D, Faisal M, Rauf A, Huang JH. Synthetic Story of a Blockbuster Drug: Reboxetine, a Potent Selective Norepinephrine Reuptake Inhibitor. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Danish Shahzad
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Faisal
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ameema Rauf
- Department
of Chemistry, University of Wah, Wah Cantt, Pakistan
| | - Jian-hua Huang
- School
of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|