1
|
Lukas F, Findlay MT, Fillols M, Templ J, Savino E, Martin B, Allmendinger S, Furegati M, Noël T. Graphitic Carbon Nitride as a Photocatalyst for Decarboxylative C(sp 2)-C(sp 3) Couplings via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405902. [PMID: 38807439 DOI: 10.1002/anie.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The development of robust and reliable methods for the construction of C(sp2)-C(sp3) bonds is vital for accessing an increased array of structurally diverse scaffolds in drug discovery and development campaigns. While significant advances towards this goal have been achieved using metallaphotoredox chemistry, many of these methods utilise photocatalysts based on precious-metals due to their efficient redox processes and tuneable properties. However, due to the cost, scarcity, and toxicity of these metals, the search for suitable replacements should be a priority. Here, we show the use of commercially available heterogeneous semiconductor graphitic carbon nitride (gCN) as a photocatalyst, combined with nickel catalysis, for the cross-coupling between aryl halide and carboxylic acid coupling partners. gCN has been shown to engage in single-electron-transfer (SET) and energy-transfer (EnT) processes for the formation of C-X bonds, and in this manuscript we overcome previous limitations to furnish C-C over C-O bonds using carboxylic acids. A broad scope of both aryl halides and carboxylic acids is presented, and recycling of the photocatalyst demonstrated. The mechanism of the reaction is also investigated.
Collapse
Affiliation(s)
- Florian Lukas
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michael T Findlay
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johanna Templ
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Elia Savino
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kaur M, Van Humbeck JF. Recent trends in catalytic sp 3 C-H functionalization of heterocycles. Org Biomol Chem 2020; 18:606-617. [PMID: 31912069 DOI: 10.1039/c9ob01559k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
3
|
Mishra AA, Subhedar D, Bhanage BM. Nickel, Cobalt and Palladium Catalysed C−H Functionalization of Un‐Activated C(sp
3
)−H Bond. CHEM REC 2018; 19:1829-1857. [DOI: 10.1002/tcr.201800093] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ashish A. Mishra
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Dnyaneshwar Subhedar
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Bhalchandra M. Bhanage
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| |
Collapse
|
4
|
Yu L, Chen X, Song ZN, Liu D, Hu L, Yu Y, Tan Z, Gui Q. Selective Synthesis of Aryl Nitriles and 3-Imino-1-oxoisoindolines via Nickel-Promoted C(sp 2)-H Cyanations. Org Lett 2018; 20:3206-3210. [PMID: 29787284 DOI: 10.1021/acs.orglett.8b01056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient nickel-promoted selective monocyanation of benzamides with TMSCN via 8-aminoquinoline directed ortho C-H activation has been developed. Varieties of functionalized ortho-cyanated (hetero)aryl nitriles can be selectively synthesized in moderate to good yields. These cyanation products can be easily transformed into various 3-imino-1-oxoisoindolines in a one-pot procedure. The mild reaction conditions, use of cheap and commercially available reagents, wide functional group tolerance, and operational convenience make this protocol practical to the synthetic community.
Collapse
Affiliation(s)
- Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Xiang Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Ze-Nan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Qingwen Gui
- College of Science , Hunan Agricultural University , Changsha 410128 , P. R. China
| |
Collapse
|
5
|
Yu L, Chen X, Liu D, Hu L, Yu Y, Huang H, Tan Z, Gui Q. Direct Synthesis of Primary Anilines via Nickel-mediated C(sp
2
)-H Aminations. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Xiang Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Hang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Qingwen Gui
- College of Science; Hunan Agricultural University; Changsha 410128 People's Republic of China
| |
Collapse
|
6
|
Hu L, Chen X, Yu L, Yu Y, Tan Z, Zhu G, Gui Q. Highly mono-selective ortho-methylthiolation of benzamides via cobalt-catalyzed sp2 C–H activation. Org Chem Front 2018. [DOI: 10.1039/c7qo00717e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly mono-selective ortho-methylthiolation of benzamides was achieved via Co-catalyzed coupling of benzamides with DMSO.
Collapse
Affiliation(s)
- Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiang Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Gangguo Zhu
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Qingwen Gui
- College of Science
- Hunan Agricultural University
- Changsha 410128
- P. R. China
| |
Collapse
|