1
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
2
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Chighine K, Léonce E, Boutin C, Desvaux H, Berthault P. 129Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:409-420. [PMID: 37904767 PMCID: PMC10539730 DOI: 10.5194/mr-2-409-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 11/01/2023]
Abstract
The availability of a benchtop nuclear magnetic resonance (NMR) spectrometer, of low cost and easily transportable, can allow detection of low quantities of biosensors, provided that hyperpolarized species are used. Here we show that the micromolar threshold can easily be reached by employing laser-polarized xenon and cage molecules reversibly hosting it. Indirect detection of caged xenon is made via chemical exchange, using ultra-fast Z spectroscopy based on spatio-temporal encoding. On this non-dedicated low-field spectrometer, several ideas are proposed to improve the signal.
Collapse
Affiliation(s)
- Kévin Chighine
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Estelle Léonce
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Céline Boutin
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hervé Desvaux
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Patrick Berthault
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Kunth M, Witte C, Schröder L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals (Basel) 2021; 14:79. [PMID: 33494166 PMCID: PMC7909792 DOI: 10.3390/ph14020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Xenon magnetic resonance imaging (MRI) provides excellent sensitivity through the combination of spin hyperpolarization and chemical exchange saturation transfer (CEST). To this end, molecular hosts such as cryptophane-A or cucurbit[n]urils provide unique opportunities to design switchable MRI reporters. The concentration determination of such xenon binding sites in samples of unknown dilution remains, however, challenging. Contrary to 1H CEST agents, an internal reference of a certain host (in this case, cryptophane-A) at micromolar concentration is already sufficient to resolve the entire exchange kinetics information, including an unknown host concentration and the xenon spin exchange rate. Fast echo planar imaging (EPI)-based Hyper-CEST MRI in combination with Bloch-McConnell analysis thus allows quantitative insights to compare the performance of different emerging ultra-sensitive MRI reporters.
Collapse
Affiliation(s)
- Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Christopher Witte
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
7
|
Du K, Zemerov SD, Carroll PJ, Dmochowski IJ. Paramagnetic Shifts and Guest Exchange Kinetics in Co nFe 4-n Metal-Organic Capsules. Inorg Chem 2020; 59:12758-12767. [PMID: 32851844 DOI: 10.1021/acs.inorgchem.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the magnetic resonance properties and exchange kinetics of guest molecules in a series of hetero-bimetallic capsules, [ConFe4-nL6]4- (n = 1-3), where L2- = 4,4'-bis[(2-pyridinylmethylene)amino]-[1,1'-biphenyl]-2,2'-disulfonate. H bond networks between capsule sulfonates and guanidinium cations promote the crystallization of [ConFe4-nL6]4-. The following four isostructural crystals are reported: two guest-free forms, (C(NH2)3)4[Co1.8Fe2.2L6]·69H2O (1) and (C(NH2)3)4[Co2.7Fe1.3L6]·73H2O (2), and two Xe- and CFCl3-encapsulated forms, (C(NH2)3)4[(Xe)0.8Co1.8Fe2.2L6]·69H2O (3) and (C(NH2)3)4[(CFCl3)Co2.0Fe2.0L6]·73H2O (4), respectively. Structural analyses reveal that Xe induces negligible structural changes in 3, while the angles between neighboring phenyl groups expand by ca. 3° to accommodate the much larger guest, CFCl3, in 4. These guest-encapsulated [ConFe4-nL6]4- molecules reveal 129Xe and 19F chemical shift changes of ca. -22 and -10 ppm at 298 K, respectively, per substitution of low-spin FeII by high-spin CoII. Likewise, the temperature dependence of the 129Xe and 19F NMR resonances increases by 0.1 and 0.06 ppm/K, respectively, with each additional paramagnetic CoII center. The optimal temperature for hyperpolarized (hp) 129Xe chemical exchange saturation transfer (hyper-CEST) with [ConFe4-nL6]4- capsules was found to be inversely proportional to the number of CoII centers, n, which is consistent with the Xe chemical exchange accelerating as the portals expand. The systematic study was facilitated by the tunability of the [M4L6]4- capsules, further highlighting these metal-organic systems for developing responsive sensors with highly shifted 129Xe resonances.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Jayapaul J, Schröder L. Complete Generation of a 129Xe Biosensor on the Solid Support by Systematic Backbone Assembly. Bioconjug Chem 2018; 29:4004-4011. [PMID: 30428668 DOI: 10.1021/acs.bioconjchem.8b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Xenon biosensors are an emerging tool for different molecular imaging approaches. For many applications, their development requires peptide synthesis steps, followed by the selective installation of a xenon host onto the peptide backbone in solution. In this study, three different strategies were attempted for generating entire Xe biosensors on the solid support. Notably, one strategy involving CryA-da was beneficial by directly integrating this host into the growing construct on a low loaded resin via modification of the administered subcomponent equivalents and by prolonging the coupling procedure. Subsequently, installation of additional amino acids or of additional labels onto the growing construct was achieved by a procedure in which an excess amine was administered to the activated CryA-da (acid) anchored onto the resin. Further, the as-generated Xe biosensor was tested for its NMR and MRI capabilities in H2O and compared to the performance of CryA-ma. Xe NMR of the biosensor indicated a clear CEST response and the Xe MR images revealed similar contrast compared to the reference host. These observations suggest that functionalizing CryA-da on both sides with multiple labels did not alter significantly its NMR capabilities. Hereby, we could show the successful and complete synthesis of a CryA-da-based xenon biosensor on the solid support without any notable side reactions and without the necessity of multiple purification steps.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| |
Collapse
|
9
|
Zemerov SD, Roose BW, Greenberg ML, Wang Y, Dmochowski IJ. Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing. Anal Chem 2018; 90:7730-7738. [PMID: 29782149 PMCID: PMC6050516 DOI: 10.1021/acs.analchem.8b01630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | | | | | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| |
Collapse
|