1
|
Purkait A, Pal SVS, Soni K, Bhattacharyya K, Jana CK. Nitroso-azomethine(ene) reaction enabled annulations of nitrosoarenes, azomethines and alkenes. Chem Commun (Camb) 2024; 60:8541-8544. [PMID: 39041230 DOI: 10.1039/d4cc02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An unprecedented example of a nitroso-azomethine(ene) reaction is reported. Nitroso-azomethine(ene) reaction-mediated unprecedented annulation of nitrosoarenes, azomethines, and alkenes to furnish arylquinolines via arene functionalization of nitrosoarene has been developed. DFT studies provided mechanistic insights into the newly developed nitroso-azomethine(ene) reaction.
Collapse
Affiliation(s)
- Anisha Purkait
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Surya Veer Singh Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kaushik Soni
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Wang W, Feng D, Zhang P, Huang P, Ge C. One-Pot Synthesis of 4-Chloroquinolines via Bis(trichloromethyl) Carbonate and Triphenylphosphine Oxide-Mediated Cascade Reactions of N-Aryl Enaminones. J Org Chem 2024; 89:9949-9957. [PMID: 38967414 DOI: 10.1021/acs.joc.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A novel method for synthesizing substituted 4-chloroquinolines has been devised, utilizing a cascade reaction of N-aryl enaminones promoted by bis(trichloromethyl) carbonate (BTC) and triphenylphosphine oxide (TPPO). This approach features accessible starting materials, a broad substrate range, extensive functional group compatibility, gentle reaction conditions, and straightforward operation. Its versatility is evidenced by its facile scalability and suitability for late-stage derivatization. A plausible mechanism involving α-carbonylation, 6π-azaelectrocyclization, and dehydroxychlorination sequence is proposed.
Collapse
Affiliation(s)
- Wenhao Wang
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Ping Zhang
- Judicial Authentication Center, Liaoning University, Shenyang, Liaoning 110036, China
| | - Peng Huang
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| |
Collapse
|
3
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
4
|
Cuervo-Prado P, Orozco-López F, Becerra-Rivas C, Leon-Vargas D, Lozano-Oviedo J, Cobo J. Regioselective Synthesis of Cycloalkane-fused Pyrazolo[4,3- e]pyridines through Tandem Reaction of 5-aminopyrazoles, Cyclic Ketones and Electron-rich Olefins. Curr Org Synth 2024; 21:947-956. [PMID: 39044704 DOI: 10.2174/0115701794269765231204064930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 07/25/2024]
Abstract
BACKGROUND Pyrazolopyridines are interesting fused heterocyclic pharmacophores that combine pyrazole and pyridine; two privileged nuclei extensively studied and with a wide range of applications. They can be obtained by a broad variety of synthetic methods among which multicomponent reactions have gained importance, especially from 5-aminopyrazoles and dielectrophilic reagents. However, the search for new approaches more in tune with sustainable chemistry and the use of unconventional heating in three-component synthesis are open and highly relevant study fields. METHODS A novel, practical and efficient three-component synthesis of cycloalkane-fused pyrazolo[ 4,3-e]pyridines was developed through a tandem reaction of 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using microwave induction in perfluorinated solvent and iodine as catalyst. RESULTS The microwave-induced three-component approach applied in this work promoted the construction of 10 new pyrazolopyridines with high speed and excellent control of regioselectivity, favoring the linear product with good yields; where the versatility of electron-rich olefins in iodine-catalyzed cascade heterocyclizations, granted the additional benefit of easy isolation and the possibility to reuse the fluorous phase. CONCLUSION Although pyrazolopyridines have been synthetically explored because of their structural and biological properties, most of the reported synthetic methods use common or even toxic organic solvents and conventional heating or multi-step processes. In contrast, this study applied a multicomponent methodology in a single step by microwave induction and with the versatility provided in this case by the use of perfluorinated solvent, which allowed easy isolation of the final product and recovery of the fluorous phase.
Collapse
Affiliation(s)
- Paola Cuervo-Prado
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Fabián Orozco-López
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Christian Becerra-Rivas
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Diego Leon-Vargas
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - John Lozano-Oviedo
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| |
Collapse
|
5
|
Spruner von Mertz F, Molenda R, Boldt S, Villinger A, Ehlers P, Langer P. Synthesis and Properties of Diphenylbenzo[j]naphtho[2,1,8-def][2,7]phenanthrolines. Chemistry 2023; 29:e202204011. [PMID: 36795006 DOI: 10.1002/chem.202204011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 02/17/2023]
Abstract
A series of hitherto unknown 5,14-diphenylbenzo[j]naphtho[2,1,8-def][2,7]phenanthrolines, containing a 5-azatetracene and a 2-azapyrene subunit, were prepared by combination of Pd-catalyzed cross-coupling reactions with a one-pot Povarov/cycloisomerization reaction. In the final key step four new bonds are formed in one step. The synthetic approach allows for a high degree of diversification of the heterocyclic core structure. The optical and electrochemical properties were studied experimentally and by DFT/TD-DFT and NICS calculations. Due to the presence of the 2-azapyrene subunit, the typical electronic nature and characteristics of the 5-azatetracene moiety are lost and the compounds are electronically and optically more related to 2-azapyrenes.
Collapse
Affiliation(s)
| | - Ricardo Molenda
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Sebastian Boldt
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
- Leibniz Institut für Katalyse, Universität Rostock, A.-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
P R, S V, John J. Inverse Electron Demand Diels Alder Reaction of Aza- o-Quinone Methides and Enaminones: Accessing 3-Aroyl Quinolines and Indeno[1,2- b]quinolinones. J Org Chem 2022; 87:13708-13714. [PMID: 36177973 DOI: 10.1021/acs.joc.2c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have developed a Diels Alder cycloaddition route toward 3-aroyl quinolines from enaminones and in situ generated aza-o-quinone methides. The reaction was found to be general with a range of substituted enaminones and aza-o-quinone methides, and we could validate the applicability of the methodology in gram scale. We also demonstrated a one-pot strategy toward 3-acyl quinolines starting from the corresponding aliphatic ketones. Finally, we utilized the 3-aroyl quinolines for synthesizing indeno[1,2-b]quinolinones via a Pd-catalyzed dual C-H activation approach.
Collapse
Affiliation(s)
- Rahul P
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Rao K, Chai Z, Zhou P, Liu D, Sun Y, Yu F. Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols. Front Chem 2022; 10:1008568. [PMID: 36212061 PMCID: PMC9532769 DOI: 10.3389/fchem.2022.1008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C (sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.
Collapse
|
9
|
Cu(OAc)2 catalyzed aerobic oxidative 2-aryl-3-acylquinoline synthesis via aza-Michael addition and aldol condensation of α,β-unsaturated ketones and 2‑aminobenzyl alcohols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Huang L, Yang L, Wan JP, Zhou L, Liu Y, Hao G. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Org Biomol Chem 2022; 20:4385-4390. [PMID: 35579116 DOI: 10.1039/d2ob00661h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new and metal-free three-component method for the synthesis of 2,4-disubstituted quinolines via the reactions of anilines, α-keto acids and alkyl lactates is reported. The reactions proceed in the presence of p-toluene sulfonic acid (p-TSA) and tert-butyl peroxybenzoate (TBPB) to provide diverse quinoline products via the construction of new CC double, C-C single and CN double bonds without producing any organic mass-based side product. Notably, the anti-inflammatory activity of the quinolines has been investigated by measuring their ability to inhibit NO release by lipopolysaccharide (LPS) induced RAW264.7 cells, leading to the identification of 4i, 4t and 4x as potent anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Lizhu Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Lu Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
11
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
12
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
13
|
Cheng D, Yu C, Pu Y, Xu X. DDQ-mediated oxidative coupling reaction of N,N-dimethyl enaminones with cycloheptatriene. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Vil' V, Grishin S, Baberkina E, Alekseenko A, Glinushkin A, Kovalenko A, Terent'ev A. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| | - Sergei Grishin
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | - Elena Baberkina
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Anna Alekseenko
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | - Alexey Kovalenko
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Alexander Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| |
Collapse
|
15
|
Liao Y, Yan Y, Qi H, Zhang W, Xie Y, Tao Q, Deng J, Yi B. Ammonium iodide-catalyzed radical-mediated tandem cyclization of aromatic aldehydes, arylamines and 1,4-dioxane. NEW J CHEM 2022. [DOI: 10.1039/d1nj05082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a novel approach for the construction of 2-((2-arylquinolin-4-yl)oxy)ethan-1-ol derivatives involving a radical-mediated tandem cyclization reaction.
Collapse
Affiliation(s)
- Yunfeng Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Yiyan Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongrui Qi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Yanjun Xie
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Qiang Tao
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| |
Collapse
|
16
|
Chen XY, Zhang X, Wan JP. Recent advances in transition metal-free annulation toward heterocycle diversity based on the C-N bond cleavage of enaminone platform. Org Biomol Chem 2022; 20:2356-2369. [DOI: 10.1039/d2ob00126h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enaminones and analogous stable enamines are well known as platform building blocks in organic synthesis for construction of heterocyclic compounds, especially N-heterocycles. To date, especially enaminones have been successfully...
Collapse
|
17
|
Jiang P, Shan Z, Chen S, Wang Q, Jiang S, Zheng H, Deng G. Metal‐Free
Synthesis of Benzo[
a
]phenanthridines from Aromatic Aldehydes, Cyclohexanones, and Aromatic Amines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Zhifei Shan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Quanyuan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Haolin Zheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou Guangdong 510640 China
| |
Collapse
|
18
|
Gharpure SJ, Hande PE, Pandey SK, Samala G. TMSOTf-Mediated Formal [4 + 2] Cycloaddition-Retro-aza-Michael Cascade of Vinylogous Carbamates for the Synthesis of Highly Fluorescent Pyridocarbazoles. J Org Chem 2021; 86:16652-16665. [PMID: 34766500 DOI: 10.1021/acs.joc.1c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trimethylsilyl trifluoromethanesulfonate mediated dimerization reaction of vinylogous carbamates of carbazoles gave highly fluorescent pyridocarbazoles through a Povarov-type formal [4 + 2] cycloaddition-retro-aza-Michael cascade. The developed strategy was used to access indolo pyridocarbazole and quinolizinocarbazolone in an expeditious manner. Various coupling reactions were successfully performed on synthesized pyridocarbazoles to study the effect of electronics of substitution on photophysical properties. Synthesized carbazoles possess excellent photophysical properties with high quantum yields (ΦF). Fluorescent carbazole dicarboxylic acid showed potential as a pH probe to give a linear response to pH over a very wide range (7.0-3.0) reflecting high efficiency.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surya K Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ganesh Samala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Hu QQ, Gao YT, Sun JC, Gao JJ, Mu HX, Li YM, Zheng YN, Yang KR, Zhu YP. Iodine-imine Synergistic Promoted Povarov-Type Multicomponent Reaction for the Synthesis of 2,2'-Biquinolines and Their Application to a Copper/Ligand Catalytic System. Org Lett 2021; 23:9000-9005. [PMID: 34748354 DOI: 10.1021/acs.orglett.1c03546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient iodine-imine synergistic promoted Povarov-type multicomponent reaction was reported for the synthesis of a practical 2,2'-biquinoline scaffold. The tandem annulation has reconciled iodination, Kornblum oxidation, and Povarov aromatization, where the methyl group of the methyl azaarenes represents uniquely reactive input in the Povarov reaction. This method has broad substrate scope and mild conditions. Furthermore, these 2,2'-biquinoline derivatives had been directly used as bidentate ligands in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Qi-Qi Hu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ting Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jia-Chen Sun
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jing-Jing Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Hong-Xiao Mu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yi-Ming Li
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Ya-Nan Zheng
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Kai-Rui Yang
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| |
Collapse
|
20
|
Liu Y, Wang C, Tong Y, Ling Y, Zhou C, Xiong B. Cascade Reaction of α, β‐Unsaturated Ketones and 2‐Aminoaryl Alcohols for the Synthesis of 3‐Acylquinolines by a Copper Nanocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuan Liu
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Chen Wang
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yixin Tong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yong Ling
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 People's Republic of China
| | - Biao Xiong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| |
Collapse
|
21
|
Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation. Catalysts 2021. [DOI: 10.3390/catal11080877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report a facile synthetic methodology for the preparation of 2,3-dialkylquinolines from anilines and propionaldehydes. This cyclization involved environmentally friendly Nafion® NR50 as an acidic catalyst with microwave irradiation as the heating source. A series of substituted 2-ethyl-3-methylquinolines were prepared from various anilines and propionaldehyde derivatives through this protocol with good to excellent yields. Some new chemical structures were confirmed by X-ray single-crystal diffraction analysis and the related data were provided. The plausible reaction mechanism studies are also discussed.
Collapse
|
22
|
Yu XX, Zhao P, Zhou Y, Huang C, Wang LS, Wu YD, Wu AX. Employing Arylacetylene as a Diene Precursor and Dienophile: Synthesis of Quinoline via the Povarov Reaction. J Org Chem 2021; 86:8381-8388. [PMID: 34106703 DOI: 10.1021/acs.joc.1c00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel I2-mediated Povarov reaction of arylacetylenes and anilines for the synthesis of 2,4-substituted quinolines has been developed, in which arylacetylene first acts as both a diene precursor and dienophile. This work further develops the Povarov reaction to expand the types of diene precursors. Preliminary mechanistic studies indicate that the I2/DMSO system realized the oxidative carbonylation of C(sp)-H of arylacetylene and then undergoes a [4 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
23
|
Hayani S, Thiruvalluvar AA, Baba YF, Rodi YK, Muthunatesan S, Chahdi FO, Mague JT, Ibrahimi BE, Anouar EH, Sebbar NK, Essassi EM. Synthesis, structure elucidation, Hirshfeld surface analysis, DFT, molecular docking and Monte Carlo simulation of new quinoline-4-carboxylate derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Hayani S, Sert Y, Baba YF, Benhiba F, Chahdi FO, Laraqui FZ, Mague JT, El Ibrahimi B, Sebbar NK, Rodi YK, Essassi EM. New alkyl (cyclohexyl) 2-oxo-1-(prop‑2-yn-1-yl)-1, 2-dihydroquinoline-4-carboxylates: Synthesis, crystal structure, spectroscopic characterization, hirshfeld surface analysis, molecular docking studies and DFT calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Purkait A, Saha S, Ghosh S, Jana CK. Lewis acid catalyzed reactivity switch: pseudo three-component annulation of nitrosoarenes and (epoxy)styrenes. Chem Commun (Camb) 2020; 56:15032-15035. [PMID: 33188668 DOI: 10.1039/d0cc02650f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Lewis acid catalyzed annulation reaction via arene functionalization of nitrosoarenes and C-C cleavage of (epoxy)styrene to provide arylquinolines is reported. The Lewis acid catalyst altered the annulation pattern providing arylquinolines instead of oxazolidines. The reaction with styrene resulted in a mixture of 2,4-diarylquinoline and 4-arylquinoline, while only 3-arylquinoline was formed from the reaction of epoxystyrene.
Collapse
Affiliation(s)
- Anisha Purkait
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, India.
| | | | | | | |
Collapse
|
26
|
Lu F, Zhang K, Wang X, Yao Y, Li L, Hu J, Lu L, Gao Z, Lei A. Electrochemical Oxidative Cross‐Coupling of Enaminones and Thiophenols to Construct C−S Bonds. Chem Asian J 2020; 15:4005-4008. [DOI: 10.1002/asia.202001116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Fangling Lu
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Kan Zhang
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Xiaoyu Wang
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Yanxiu Yao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Liangsen Li
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Jianguo Hu
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| | - Ziwei Gao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Aiwen Lei
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| |
Collapse
|
27
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
28
|
Medishetti N, Kale A, Nanubolu JB, Atmakur K. Iron(III)chloride induced synthesis of pyrazolopyridines & quinolines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1810275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nagaraju Medishetti
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashok Kale
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Krishnaiah Atmakur
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
29
|
Mehedi MSA, Tepe JJ. Sc(OTf)3-Mediated One-Pot Synthesis of 2,3-Disubstituted Quinolines from Anilines and Epoxides. J Org Chem 2020; 85:6741-6746. [DOI: 10.1021/acs.joc.0c00803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Shafaat Al Mehedi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
30
|
Zhu S, Shi K, Zhu H, Jia ZK, Xia XF, Wang D, Zou LH. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org Lett 2020; 22:1504-1509. [PMID: 32043889 DOI: 10.1021/acs.orglett.0c00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unprecedented copper-catalyzed reaction of sulfoxonium ylides and anthranils is reported that enables an easy access to 2,3-diaroylquinolines through a [4+1+1] annulation. Copper-catalyzed homocoupling of sulfoxonium ylides provided α,α,β-tricarbonyl sulfoxonium ylides, which provides a strategy to extend the carbon chain through C-C bond formation. The utility of the products as well as the mechanistic details of the process are presented.
Collapse
Affiliation(s)
- Shuai Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Kai Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Hao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Zhe-Kang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Liang-Hua Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| |
Collapse
|
31
|
R S R, Sugunan A, S R, Suresh CH, Rajendar G. A Method for the Preparation of β-Amino-α,β-unsaturated Carbonyl Compounds: Study of Solvent Effect and Mechanism. Org Lett 2020; 22:1040-1045. [PMID: 31990197 DOI: 10.1021/acs.orglett.9b04531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient method for the preparation of β-amino-α,β-unsaturated carbonyl compounds is demonstrated. Bench-stable sodium 3-oxo-enolates were prepared from carbonyl compounds, and reacted with amines in the presence of an acid and a desiccant. DFT studies revealed contrasting mechanisms toward the reactivity of aliphatic amines in protic solvents and aromatic amines in aprotic solvents. While the former proceeds through the formation of an imine, the latter passes through the Michael addition-elimination mechanism.
Collapse
Affiliation(s)
- Reyno R S
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , Kerala 695551 , India
| | - Akash Sugunan
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , Kerala 695551 , India
| | - Ranganayakulu S
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , Kerala 695551 , India
| | - Cherumuttathu H Suresh
- Chemicals Sciences and Technology Division , CSIR-NIIST , Thiruvananthapuram , Kerala 695564 , India
| | - Goreti Rajendar
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , Kerala 695551 , India
| |
Collapse
|
32
|
Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Adv 2020; 10:4876-4898. [PMID: 35498276 PMCID: PMC9049580 DOI: 10.1039/c9ra09905k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Collapse
Affiliation(s)
- Dayana Orozco
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Armando Bermúdez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| | - Leonor Y Vargas Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás A. A. 1076 Bucaramanga Colombia
| | - Arturo René Mendoza Salgado
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| |
Collapse
|
33
|
Xiao ST, Ma CT, Di JQ, Zhang ZH. MOF-5 as a highly efficient and recyclable catalyst for one pot synthesis of 2,4-disubstituted quinoline derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj01301c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An approach was developed for the synthesis of 2,4-disubstituted quinoline derivatives via a one pot three-component reaction of aromatic amines, aldehydes and alkynes catalyzed by MOF-5 under solvent-free conditions.
Collapse
Affiliation(s)
- Song-Tao Xiao
- Department of Radiochemistry
- China Institute of Atomic Energy
- Beijing 102413
- China
| | - Cui-Ting Ma
- Hebei Key Laboratory of Organic Functional Molecules
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
| | - Jia-Qi Di
- Hebei Key Laboratory of Organic Functional Molecules
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
| |
Collapse
|
34
|
Liu S, Li J, Lin J, Liu F, Liu T, Huang C. Substituent-controlled chemoselective synthesis of multi-substituted pyridones via a one-pot three-component cascade reaction. Org Biomol Chem 2020; 18:1130-1134. [DOI: 10.1039/c9ob02456e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A substituent-controlled chemoselective cycloaddition reaction which afforded a variety of 2-pyridones and 4-pyridones in good to excellent yields, respectively, has been developed.
Collapse
Affiliation(s)
- Shitao Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province
- School of Chemistry and Environment
- Yunnan Minzu University
- Kunming
| | - Jisen Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province
- School of Chemistry and Environment
- Yunnan Minzu University
- Kunming
| | - Junjie Lin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province
- School of Chemistry and Environment
- Yunnan Minzu University
- Kunming
| | - Fujun Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province
- School of Chemistry and Environment
- Yunnan Minzu University
- Kunming
| | - Teng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing
- P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province
- School of Chemistry and Environment
- Yunnan Minzu University
- Kunming
| |
Collapse
|
35
|
Zou LH, Zhu H, Zhu S, Shi K, Yan C, Li PG. Copper-Catalyzed Ring-Opening/Reconstruction of Anthranils with Oxo-Compounds: Synthesis of Quinoline Derivatives. J Org Chem 2019; 84:12301-12313. [DOI: 10.1021/acs.joc.9b01577] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Hao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Shuai Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Kai Shi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Cheng Yan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Ping-Gui Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| |
Collapse
|
36
|
Jiang TS, Zhou Y, Dai L, Liu X, Zhang X. Acid-promoted metal-free synthesis of 3-ketoquinolines from amines, enaminones and DMSO. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Wakade SB, Tiwari DK, Phanindrudu M, Pushpendra, Tiwari DK. Synthesis of 3-keto-quinolines from enaminones, anilines and DMSO: Transition metal free one pot cascade. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Affiliation(s)
- Fengtian Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and DevicesEast China University of Technology Guanglan Road Nanchang 330013 P. R. China
| | - Mingyang Ma
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and DevicesEast China University of Technology Guanglan Road Nanchang 330013 P. R. China
| | - Jianwei Xie
- College of Chemistry and BioengineeringHunan University of Science and Engineering Yangzitang Road Yongzhou 425100 P. R. China
| |
Collapse
|
39
|
Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu YD, Wu AX. Direct Synthesis of 2,3-Diaroyl Quinolines and Pyridazino[4,5-b]quinolines via an I2-Promoted One-Pot Multicomponent Reaction. Org Lett 2019; 21:2708-2711. [DOI: 10.1021/acs.orglett.9b00685] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xia Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
40
|
Xiong J, Liu Y. Transition‐Metal‐free C5, C7‐Dihalogenation and the Switchable C5 Halogenation of 8‐Hydroxyquinolines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jin Xiong
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
41
|
Godha AK, Thiruvengadam J, Abhilash V, Balgi P, Narayanareddy AV, Vignesh K, Gadakh AV, Sathiyanarayanan AM, Ganesh S. Environmentally benign nucleophilic substitution reaction of arylalkyl halides in water using CTAB as the inverse phase transfer catalyst. NEW J CHEM 2019. [DOI: 10.1039/c9nj03941d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An environmentally benign, scalable and highly selective C-arylalkylation of active methylene compounds is developed using CTAB as the inverse phase transfer catalyst. The methodology is also applicable to the regioselective synthesis of N-aralkyl/alkyl 2-pyridones.
Collapse
|
42
|
Aiken S, Anozie K, de Azevedo ODCC, Cowen L, Edgar RJL, Gabbutt CD, Heron BM, Lawrence PA, Mills AJ, Rice CR, Urquhart MWJ, Zonidis D. Expedient synthesis of highly substituted 3,4-dihydro-1,2-oxathiine 2,2-dioxides and 1,2-oxathiine 2,2-dioxides: revisiting sulfene additions to enaminoketones. Org Biomol Chem 2019; 17:9585-9604. [DOI: 10.1039/c9ob01657k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The addition of sulfenes to substituted enaminoketones, followed by a facile Cope elimination, provides efficient access to a diverse series of 1,2-oxathiine 2,2-dioxides.
Collapse
|
43
|
Bharadwaj KC. Chemoselective and Highly Rate Accelerated Intramolecular Aza-Morita-Baylis-Hillman Reaction. J Org Chem 2018; 83:14498-14506. [PMID: 30441893 DOI: 10.1021/acs.joc.8b02310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite being a very useful C-C bond forming and highly applicative reaction, Morita-Baylis-Hillman (MBH) reaction has been limited by its excessive slow reaction rate, including its intramolecular version. In certain cases, reaction time may even go to weeks and months. A highly chemoselective and rate accelerated intramolecular MBH reaction of just 15 min has been developed. The product dihydroquinoline, being unstable, was converted to an important quinoline framework. In some cases IMBH adducts were isolable, thus confirming the reaction path. Control experiments toward mechanism investigation have been carried out. Use of sodium sulfide has emerged as a rate accelerating catalyst in DMF-EtOH solvent system. Reaction intermediate for IMBH pathway was isolated and characterized. Other aspects such as the application of IMBH adduct for Michael addition and amidation have also been carried out.
Collapse
Affiliation(s)
- Kishor Chandra Bharadwaj
- Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi 221005 , India
| |
Collapse
|
44
|
Bai H, Sun R, Liu S, Yang L, Chen X, Huang C. Construction of Fully Substituted 2-Pyridone Derivatives via Four-Component Branched Domino Reaction Utilizing Microwave Irradiation. J Org Chem 2018; 83:12535-12548. [DOI: 10.1021/acs.joc.8b01788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hairui Bai
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Rongrong Sun
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Shitao Liu
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Lijuan Yang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Xuebing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan, School of Science, Honghe University, Mengzi 661199, P.R. China
| | - Chao Huang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P.R. China
| |
Collapse
|
45
|
Zhou P, Hu B, Wang Y, Zhang Q, Li X, Yan S, Yu F. Convenient Synthesis of Quinoline-4-carboxylate Derivatives through the Bi(OTf)3
-Catalyzed Domino Cyclization/Esterification Reaction of Isatins with Enaminones in Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Zhou
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Hu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yanqin Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Xiang Li
- Research Center for Analysis and Measurement; Kunming University of Science and Technology; 650500 Kunming P. R. China
| | - Shengjiao Yan
- School of Chemical Science and Technology; Yunnan University; 650500 Kunming P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| |
Collapse
|
46
|
Zhou P, Hu B, Zhao S, Zhang Q, Wang Y, Li X, Yu F. An improved Pfitzinger reaction for the direct synthesis of quinoline-4-carboxylic esters/acids mediated by TMSCl. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Bai H, Sun R, Chen X, Yang L, Huang C. Microwave-Assisted, Solvent-Free, Three-Component Domino Protocol: Efficient Synthesis of Polysubstituted-2-Pyridone Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201800606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hairui Bai
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Rongrong Sun
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Xuebing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan; School of Science; Honghe University, Mengzi; 661100, P. R. China
| | - Lijuan Yang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Chao Huang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| |
Collapse
|
48
|
Shi D, Lin W, Zhang M, Wang N, Xu W. An Efficient Synthesis and Evaluation of Antitumor Activities of Functionalized Pyrano[2,3-b]quinolines. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|