1
|
Berthiol F, Thomas F, Sabot C, Deprés JP. Direct Synthesis of Saturated Alcohols from Conjugated Ketones Using NaBH 4 and Catalytic Amount of CuCN in Ethanol: Additive Catalysis with a Lithium Salt or a Sodium Salt. J Org Chem 2024; 89:17147-17154. [PMID: 39412781 DOI: 10.1021/acs.joc.4c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A direct, efficient, and highly chemoselective synthesis of saturated alcohols through one-pot sequential 1,4- and 1,2-reduction of cyclic and acyclic conjugated ketones is reported. The saturated alcohols are obtained in very good yields using sodium borohydride (NaBH4) as a reducing agent and a catalytic amount of copper(I) cyanide (CuCN) in ethanol as a green solvent. This nontoxic solvent significantly favors full 1,4-reduction, as opposed to methanol. Selectivity is further enhanced by the combination of two additives (a lithium salt or a sodium salt, such as NaI).
Collapse
Affiliation(s)
- Florian Berthiol
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes, Gières 38610, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes, Gières 38610, France
| | - Cyrille Sabot
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen F-76000, France
| | - Jean-Pierre Deprés
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes, Gières 38610, France
| |
Collapse
|
2
|
Li P, Zhang Y, Liu Z, Kong Q, Fu L, Huo X. Pd/Cu-Cocatalyzed Asymmetric Cascade Heck/Tsuji-Trost Reaction to Access Non-natural Tryptophans. Org Lett 2024; 26:10356-10363. [PMID: 39568192 DOI: 10.1021/acs.orglett.4c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A Pd-catalyzed asymmetric Heck cascade reaction involving the intramolecular carbopalladation of unsaturated hydrocarbons, followed by nucleophilic trapping of the resulting palladium species, is a powerful approach for constructing chiral N-heterocycles. However, the use of prochiral nucleophiles in these reactions remains significantly underexplored. Herein, we report a novel Pd/Cu catalytic system for the asymmetric cascade Heck/Tsuji-Trost reaction of allenamides and aldimine esters. This robust method allows for the rapid synthesis of a wide range of enantiopure non-natural α-substituted tryptophans in high yields (up to 99% yield) with excellent enantioselectivities (up to 98% ee). Additionally, the synthetic utility of this protocol is demonstrated through scale-up experiments and diverse valuable transformations.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yang Zhang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou 215123, P. R. China
| | - Zijiao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qi Kong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou 215123, P. R. China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Liu Y, Chen H, Wang X. Synergistic Homogeneous Asymmetric Cu Catalysis with Pd Nanoparticle Catalysis in Stereoselective Coupling of Alkynes with Aldimine Esters. J Am Chem Soc 2024; 146:28427-28436. [PMID: 39356822 DOI: 10.1021/jacs.4c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the nature of a transition-metal-catalyzed process, including catalyst evolution and the real active species, is rather challenging yet of great importance for the rational design and development of novel catalysts, and this is even more difficult for a bimetallic catalytic system. Pd(0)/carboxylic acid combined system-catalyzed allylic alkylation reaction of alkynes has been used as an atom-economical protocol for the synthesis of allylic products. However, the asymmetric version of this reaction is still rather limited, and the in-depth understanding of the nature of active Pd species is still elusive. Herein we report an enantioselective coupling between readily available aldimine esters and alkynes using a synergistic Cu/Pd catalyst system, affording a diverse set of α-quaternary allyl amino ester derivatives in good yields with excellent enantioselectivities. Mechanistic studies indicated that it is most likely a synergistic asymmetric molecular Cu catalysis with Pd nanoparticle catalysis. The Pd catalyst precursor is transformed to soluble Pd nanoparticles in situ, which are responsible for activating the alkyne to an electrophilic allylic Pd intermediate, while the chiral Cu complex of the aldimine ester enolate provides chiral induction and works in synergy with the Pd nanoparticles.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongda Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Lin Y, Wen W, Liu JH, Zhu F, Li CX, Wu ZL, Cai T, Liu CJ, Guo QX. Asymmetric α-Allylation of Amino Acid Esters with Alkynes Enabled by Chiral Aldehyde/Palladium Combined Catalysis. Org Lett 2024; 26:7908-7913. [PMID: 39254672 DOI: 10.1021/acs.orglett.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A highly efficient, atom-economical α-allylation reaction of NH2-unprotected amino acid esters and alkynes is achieved by chiral aldehyde/palladium combined catalysis. A diverse range of α,α-disubstituted nonproteinogenic α-amino acid esters are produced in 31-92% yields and 84-97% ee values. The allylation products are utilized for the synthesis of drug molecule BMS561392 and other chiral molecules possessing complex structures. Mechanistic investigations reveal that this reaction proceeds via a chiral aldehyde-/palladium-mediated triple cascade catalytic cycle.
Collapse
Affiliation(s)
- Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chen-Jiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Zhou J, Chen P, Liang G, Zhou J, Ou J, Zhou P, Wang T, Zhang D, Zhou H. Heterobimetallic Zinc/Strontium Catalysis: Z/ E-Selective Asymmetric Conjugate Addition of 3-Acetoxy-2-oxindoles to Alkynones. J Org Chem 2024; 89:12307-12317. [PMID: 39190123 DOI: 10.1021/acs.joc.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A chiral Zn-Sr heterobimetallic catalyst system generated in situ has been developed for the first highly Z/E-selective asymmetric conjugate addition of 3-acetoxy-2-oxindoles to alkynones. Both terminal alkynones and nonterminal alkynones could be applied to the heterobimetallic catalytic system. The corresponding 3-alkenyl-3-acyloxy-2-oxindoles were obtained in moderate to excellent yields (55-99%) with high E:Z ratios (8:1-30:1) and high enantioselectivities (86-99% ee).
Collapse
Affiliation(s)
- Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Pengfei Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Wang
- Joint Training Base for Pharmacy Postgraduate Students of Chongqing Medical University and Chongqing Medleader Bio-Pharm Company, Ltd., Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Liu Y, Hu J, Long J, Liu X, Luo SP, Fang X. Nickel-Catalyzed Cyanation of Allylic Alcohols: High Degree of Chiral Inversion in Aqueous Reaction Media. Org Lett 2024; 26:6413-6417. [PMID: 39037900 DOI: 10.1021/acs.orglett.4c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nickel-catalyzed aqueous cyanation of allylic alcohols is herein described. This catalytic protocol provided environmentally friendly and operationally simple access to a variety of allylic nitriles in good yields. For chiral allylic alcohols, the reaction gave chiral allylic nitriles with a high degree of chiral inversion. The accelerated release of cyanide in H2O was crucial for the success of this reaction.
Collapse
Affiliation(s)
- Yaxin Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawen Hu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinguo Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuefen Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
8
|
Zhang J, Luo Y, Zheng E, Huo X, Ma S, Zhang W. Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions. J Am Chem Soc 2024; 146:9241-9251. [PMID: 38502927 DOI: 10.1021/jacs.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this C═C bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Liu J, Lu Y, Zhu L, Lei X. Construction of indolizine scaffolds from α,ω-alkynoic acids and α,ω-vinylamines via sequential-relay catalysis in "one pot". Org Biomol Chem 2024; 22:2474-2479. [PMID: 38440950 DOI: 10.1039/d4ob00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A simple and efficient method has been developed for the synthesis of a diverse range of aryl-fused indolizin-3-ones through sequential Au(I)-catalyzed hydrocarboxylation, aminolysis, and cyclization, followed by ruthenium-catalyzed ring-closing metathesis. Moderate to good yields were observed with satisfactory substrate scope and functional group tolerance. The developed protocol represents a practical strategy for the construction of bioactive aryl-fused indolizin-3-ones.
Collapse
Affiliation(s)
- Jiami Liu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Lingxuan Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| |
Collapse
|
10
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
11
|
Song H, Li M, You SL. Z-Retentive Asymmetric Allylic Substitution Reactions of Aldimine Esters under Ru/Cu Dual Catalysis. J Am Chem Soc 2024; 146:4333-4339. [PMID: 38324359 DOI: 10.1021/jacs.3c13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ru/Cu dual catalysis has been applied for Z-retentive asymmetric allylic substitution reactions of aldimine esters. This reaction provides an enantioselective synthesis of chiral Z-olefins in high yields (up to 91% yield) with excellent enantioselectivity (up to 98% ee) under mild conditions. The previously unreacted trisubstituted allylic electrophiles under Ir catalytic system are found to be compatible, affording the stereoretentive products in either Z- or E-form. Both linear and branched allylic electrophiles are suitable substrates with excellent reaction outcomes. Notably, Ru and Cu complexes are added in one-pot and simplifies the manipulation of this protocol and self-sorting phenomena could be observed in this Ru/Cu dual catalytic system.
Collapse
Affiliation(s)
- Hao Song
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
13
|
Gambhir D, Singh S, Singh RP. Enamine/Iminium-based Dual Organocatalytic Systems for Asymmetric Catalysis and Synthesis. Chem Asian J 2023:e202300627. [PMID: 37910066 DOI: 10.1002/asia.202300627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
The rational combination of two catalysts to expedite the construction of chiral complex biologically and pharmacologically relevant chiral compounds has widely gained momentum over the past decade. In particular, enamine or iminium catalysis ensuing from the activation of aldehyde or ketone by chiral amine catalysts in conjugation with other organocatalytic cycles has facilitated several asymmetric transformations to yield the enantioenriched products. Regardless of the considerable discussion on the various dual catalytic approaches, literature lacks a comprehensive review focusing on the enamine and iminium-based dual organocatalytic systems. Thus, this review article has discussed the noteworthy achievements in the field of asymmetric catalysis and synthesis catalyzed by the enamine and iminium-based dual organocatalytic systems.
Collapse
Affiliation(s)
- Diksha Gambhir
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Sanjay Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Ravi P Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| |
Collapse
|
14
|
Zhong T, Gu C, Li Y, Huang J, Han J, Zhu C, Han J, Xie J. Manganese/Cobalt Bimetallic Relay Catalysis for Divergent Dehydrogenative Difluoroalkylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202310762. [PMID: 37642584 DOI: 10.1002/anie.202310762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The involvement of manganese radical for halogen atom transfer (XAT) reactions has been esteemed as one reliable method but encountered with limited catalytic models. In this paper, a novel bimetallic relay catalysis of Mn2 (CO)10 and cobaloxime has been developed for divergent dehydrogenative difluoroalkylation of alkenes using commercially available difluoroalkyl bromides. A wide range of structurally diverse terminal, cyclic and internal alkenes as well as tetrasubstituted alkenes are found to be good coupling partners to deliver difluoroalkylated allylic products and difluoromethylated cyclic products, accompanied with the production of H2 as the by-product. This bimetallic relay strategy features broad substrate scope, mild reaction conditions and excellent functional group compatibility. Its success represents an important step-forward to expedite the construction of a rich library of difluoroalkylated products.
Collapse
Affiliation(s)
- Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
15
|
Abstract
Multimetallic catalysis is a powerful strategy to access complex molecular scaffolds efficiently from easily available starting materials. Numerous reports in the literature have demonstrated the effectiveness of this approach, particularly for capitalizing on enantioselective transformations. Interestingly, gold joined the race of transition metals very late making its use in multimetallic catalysis unthinkable. Recent literature revealed that there is an urgent need to develop gold-based multicatalytic systems based on the combination of gold with other metals for enabling enantioselective transformations that are not possible to capitalize with the use of a single catalyst alone. This review article highlights the progress made in the field of enantioselective gold-based bimetallic catalysis highlighting the power of multicatalysis for accessing new reactivities and selectivities which are beyond the reach of individual catalysts.
Collapse
Affiliation(s)
- Shivhar B Ambegave
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Tushar R More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
16
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
17
|
Zhao L, Luo Y, Xiao J, Huo X, Ma S, Zhang W. Stereodivergent Synthesis of Allenes with α,β-Adjacent Central Chiralities Empowered by Synergistic Pd/Cu Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218146. [PMID: 36594710 DOI: 10.1002/anie.202218146] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
The stereodivergent synthesis of allene compounds bearing α,β-adjacent central chiralities has been realized via the Pd/Cu-catalyzed dynamic kinetic asymmetric alkylation of racemic allenylic esters. The matched reactivity of bimetallic catalytic system enables the challenging reaction of racemic aryl-substituted allenylic acetates with sterically crowded aldimine esters smoothly under mild reaction conditions. Various chiral non-natural amino acids bearing a terminal allenyl group are easily synthesized in high yields and with excellent diastereo- and enantioselectivities (up to >20 : 1 dr, >99 % ee). Importantly, all four stereoisomers of the product can be readily accessed by switching the configurations of the two chiral metal catalysts. Furthermore, the easy interconversion between the uncommon η3 -butadienyl palladium intermediate featuring a weak C=C/Pd coordination bond and a stable Csp2 -Pd bond is beneficial for the dynamic kinetic asymmetric transformation process (DyKAT).
Collapse
Affiliation(s)
- Ling Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
18
|
Huo LQ, Wang XH, Zhang Z, Jia Z, Peng XS, Wong HNC. Sustainable and practical formation of carbon-carbon and carbon-heteroatom bonds employing organo-alkali metal reagents. Chem Sci 2023; 14:1342-1362. [PMID: 36794178 PMCID: PMC9906645 DOI: 10.1039/d2sc05475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metal-catalysed cross-coupling reactions are amongst the most widely used methods to directly construct new bonds. In this connection, sustainable and practical protocols, especially transition metal-catalysed cross-coupling reactions, have become the focus in many aspects of synthetic chemistry due to their high efficiency and atom economy. This review summarises recent advances from 2012 to 2022 in the formation of carbon-carbon bonds and carbon-heteroatom bonds by employing organo-alkali metal reagents.
Collapse
Affiliation(s)
- Lu-Qiong Huo
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Xin-Hao Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiao-Shui Peng
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| | - Henry N C Wong
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
19
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
20
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208411. [DOI: 10.1002/anie.202208411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| |
Collapse
|
21
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210086. [DOI: 10.1002/anie.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xi Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
22
|
Wang W, Zhang F, Liu Y, Feng X. Diastereo‐ and Enantioselective Construction of Vicinal All‐Carbon Quaternary Stereocenters via Iridium/Europium Bimetallic Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208837. [DOI: 10.1002/anie.202208837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Yangbin Liu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory Shenzhen 518055 China
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
23
|
Huang LZ, Xuan Z, Park JU, Kim JH. Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using N-Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Org Lett 2022; 24:6951-6956. [PMID: 36121333 DOI: 10.1021/acs.orglett.2c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual Rh(II)/Pd(0) relay catalysis of N-sulfonyl triazoles and 2-hydroxymethylallyl carbonates has been developed, which affords N-sulfonyl pyrrolidines in moderate to good yields with high diastereoselectivities. The reaction proceeds via a relay mechanism involving O-H insertion onto the α-imino Rh(II)-carbene, [3,3]-sigmatropic rearrangement, dipole formation through Pd(0)-catalyzed decarboxylation, and intramolecular N-allylation, leading to the formation of multiple bonds in a one-pot operation.
Collapse
Affiliation(s)
- Liang-Zhu Huang
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Zi Xuan
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
24
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China 200240 Shanghai CHINA
| | - Guanlin Li
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xi Wang
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wanbin Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
25
|
Wang W, Zhang F, Liu Y, Feng X. Diastereo‐ and Enantioselective Construction of Vicinal All‐Carbon Quaternary Stereocenters via Iridium/Europium Bimetallic Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory School of Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
26
|
Huo LQ, Shi LL, Fu J. Iron‐Copper Dual‐Catalysis Boosted C‐Based Bond‐Forming Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu-Qiong Huo
- The Chinese University of Hong Kong - Shenzhen School of Science and Engineering Longgang District 518055 Shenzhen CHINA
| | - Li-Li Shi
- Peking University Shenzhen Graduate School State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Shenzhen University TownLishui RoadXili TownNanshan District 518055 Shenzhen CHINA
| | - Junkai Fu
- Northeast Normal University Department of Chemistry Renmin Street, 5268Nanguan district 130024 Changchun CHINA
| |
Collapse
|
27
|
Wang K, Lin X, Li Q, Liu Y, Li C. The synthesis of tetracyclic coumarins via decarboxylative asymmetric [4+2] cycloadditions enabled by Pd(0)/Cu(I) synergistic catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huimin Yu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
29
|
Peng Y, Han C, Luo Y, Li G, Huo X, Zhang W. Nickel/Copper‐Cocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of α‐Quaternary Amino Acids. Angew Chem Int Ed Engl 2022; 61:e202203448. [DOI: 10.1002/anie.202203448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
30
|
Deng LF, Cheng J, Chen JJ, Yang L. Ni‐Catalyzed Cyanation of Allylic Alcohols with Formamide as the Cyano Source. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Luo Yang
- Xiangtan University Chemistry Yuhu 411105 Xiangtan CHINA
| |
Collapse
|
31
|
Xuan Z, chen ZS. Cooperative Rh(II)/Pd(0) Dual‐Catalyzed Gem‐Difunctionalization of α‐Diazo Carbonyl Compounds: Construction of Quaternary Carbon Centers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zi Xuan
- Gyeongsang National University Department of Chemistry (BK 21 Four) KOREA, REPUBLIC OF
| | - zi-sheng chen
- Northwest A&F University College of Chemistry and Pharmacy Yangling 712100, Shaanxi, P. R. China 712100 Shaanxi CHINA
| |
Collapse
|
32
|
Ke M, Yu Y, Zhang K, Zuo S, Liu Z, Xiao X, Chen F. Synergistic Pd/Cu Catalyzed Allylation of Cyclic Ketimine Esters with Vinylethylene Carbonates: Enantioselective Construction of Trisubstituted Allylic 2
H
‐Pyrrole Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
33
|
Zheng Y, Dong S, Xu K, Liu D, Zhang W. Pd-Catalyzed Asymmetric Allylic Substitution Cascade of Substituted 4-Hydroxy-2 H-pyrones with meso-Allyl Dicarbonates. Org Lett 2022; 24:3440-3444. [PMID: 35544680 DOI: 10.1021/acs.orglett.2c00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An efficient Pd-catalyzed asymmetric allylic substitution cascade of 4-hydroxy-2H-pyrones with meso-allyl dicarbonates has been developed for the synthesis of kinetic chiral tetrahydro-1H-pyrano[4,3-b]benzofuran-1-one products in ≤87% yield and ≤99% ee. The protocol was achieved via a temperature-controlled kinetic control process, which has been illustrated by means of the experimental results and control experiments. The reaction could be conducted on a gram scale, and the resulting product allows for several transformations.
Collapse
Affiliation(s)
- Yan Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kai Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Doubly stereoconvergent construction of vicinal all-carbon quaternary and tertiary stereocenters by Cu/Mg-catalyzed propargylic substitution. Nat Commun 2022; 13:2457. [PMID: 35508476 PMCID: PMC9068607 DOI: 10.1038/s41467-022-29986-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
The construction of vicinal, congested stereocenters with high selectivities is of general utility in chemistry. To build two such stereocenters in one step from readily available starting materials is very desirable, but remains challenging. We report here a doubly stereoconvergent, Cu/Mg-catalyzed asymmetric propargylic substitution reaction to convert simple starting materials to products with vicinal tertiary and all-carbon quaternary stereocenters in high yields and excellent diastereo- and enantioselectivities. Both the nucleophiles and the electrophiles employed in this transformation are racemic. This reaction uses earth abundant metal catalysts, operates under ambient conditions, and demonstrates broad substrate scope. The products of this reaction are functional group rich and synthetically versatile. Key to the success of this development is the devise of a Cu/Mg dual catalytic system and the identification of a bulky tridentate pyridinebisimidazoline (PyBim) ligand. The construction of vicinal, congested stereocenters with high selectivities is of general utility in chemistry. Here the authors report a doubly-stereoconvergent, Cu/Mg-catalyzed asymmetric propargylic substitution reaction to convert simple starting materials to products with vicinal tertiary and all-carbon quaternary stereocenters in high yields and excellent diastereo- and enantioselectivities
Collapse
|
35
|
Stereodivergent Desymmetrization of Simple Dicarboxylates via Branch‐Selective Pd/Cu Catalyzed Allylic Substitution. Chemistry 2022; 28:e202200273. [DOI: 10.1002/chem.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/07/2022]
|
36
|
Okabe R, Sugisawa N, Fuse S. A micro-flow rapid dual activation approach for urethane-protected α-amino acid N-carboxyanhydride synthesis. Org Biomol Chem 2022; 20:3303-3310. [PMID: 35229099 DOI: 10.1039/d2ob00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study demonstrated the rapid dual activation (10 s, 20 °C) of a combination of an α-amino acid N-carboxyanhydride and alkyl chloroformate in the synthesis of a urethane-protected α-amino acid N-carboxyanhydride in a micro-flow reactor. The key to success was the combined use of two amines that activated both substrates with proper timing. Three amines, i-Pr2NEt, Me2NBn, or N-ethylmorpholine, were used with pyridine in accordance with the steric bulkiness of a side chain in the α-amino acid N-carboxyanhydride. A variety of 16 urethane-protected α-amino acid N-carboxyanhydrides were synthesized in high yields. The role of amines was investigated based on the measurement of the time-dependent (0.5 to 10 s) decrease of α-amino acid N-carboxyanhydrides and alkyl chloroformates in the presence of amines via flash mixing technology using a micro-flow reactor. It was suggested that the in situ generated acylpyridinium cation was highly active and less prone to causing undesired decomposition compared with the acylammonium cation examined in this study. Thus, even at a very low concentration, the acylpyridinium cation facilitated the desired coupling reaction.
Collapse
Affiliation(s)
- Ren Okabe
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
37
|
Nielsen CDT, Linfoot JD, Williams AF, Spivey AC. Recent progress in asymmetric synergistic catalysis - the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org Biomol Chem 2022; 20:2764-2778. [PMID: 35298581 PMCID: PMC9082520 DOI: 10.1039/d2ob00025c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review we survey recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility (since 2016). The transformations are classified by the modes of reactivity deployed, focussing on organocatalytic activation of carbonyl substrates as chiral nucleophiles via the α-position (e.g., as enamines) and as chiral electrophiles via the β-position (e.g., as iminium ions) combined with complementary activation of their reaction partners by an achiral metal co-catalyst (e.g., Pd or Cu-based). Corresponding radical reactions are also presented in which photocatalysis mediated by achiral metal complexes replaces the metal co-catalyst. Certain privileged structures are revealed and opportunities to develop this exciting field are highlighted. A critical survey of recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility.![]()
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Joshua D Linfoot
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alexander F Williams
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alan C Spivey
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
38
|
Peng Y, Han C, Luo Y, Li G, Huo X, Zhang W. Nickel/Copper‐Cocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of α‐Quaternary Amino Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
39
|
Chang X, Ran JD, Liu XT, Wang CJ. Catalytic Asymmetric Benzylation of Azomethine Ylides Enabled by Synergistic Lewis Acid/Palladium Catalysis. Org Lett 2022; 24:2573-2578. [PMID: 35348342 DOI: 10.1021/acs.orglett.2c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synergistic chiral Lewis acid/achiral Pd catalyst system was successfully applied in the enantioselective benzylation of various imine esters, giving a range of α-benzyl-substituted α-amino acid derivatives in satisfactory yield with excellent enantioselectivity. It is worth noting that this strategy exhibits good tolerance for bicyclic and monocyclic benzylic electrophiles. Furthermore, the utility of this synthetic protocol was demonstrated by the expedient preparation of enantioenriched antihypertensive drug α-methyl-l-dopa.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing-Di Ran
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Stereodivergent propargylic alkylation of enals via cooperative NHC and copper catalysis. Nat Commun 2022; 13:1344. [PMID: 35292676 PMCID: PMC8924209 DOI: 10.1038/s41467-022-29059-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Despite that asymmetric stereodivergent synthesis has experienced great success to provide unusual processes for the creation of chirality complexity, concepts appliable to asymmetric stereodivergent catalysis are still limited. The dependence on the unusual capacity of each catalyst to precisely control the reactive site planar in the region poses unparalleled constraints on this field. Here, we first demonstrate that the chiral Cu-allenylidene species can participate in the stereodivergent propargylic alkylation of enals, in concert with chiral N-heterocyclic carbenes (NHCs). Thus, all four stereoisomers were obtained with excellent enantioselectivity and diastereoselectivity (up to >99% e.e. and >95:5 d.r.) from the same starting materials by simply altering chiral Cu-Pybox complex and NHC combinations. The rich chemistry workable in the products enables the structurally diverse synthesis of chiral functional molecules and holds great potential in alkaloid synthesis, as showcased by the preparation of the key building block to access (-)-perophoramidine. The ability to construct multiple stereocenters in a modular fashion is an important goal of synthetic organic chemistry. Here the authors present a method to construct oxindoles in four stereoisomers with high enantioselectivity and diastereoselectivity from the same starting materials by using cooperative copper- and organocatalysis.
Collapse
|
41
|
Bain AI, Chinthapally K, Hunter AC, Sharma I. Dual Catalysis in Rhodium (II) Carbenoid Chemistry. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anae I Bain
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Kiran Chinthapally
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Arianne C. Hunter
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Indrajeet Sharma
- University of Oklahoma Chemistry and Biochemistry Stephenson Life Sciences Research Center101 Stephenson Parkway 73019-5251 Norman UNITED STATES
| |
Collapse
|
42
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Fu C, Xiong Q, Xiao L, He L, Bai T, Zhang Z, Dong X, Wang C. Stereodivergent Synthesis of Carbocyclic Quaternary
α‐Amino
Acid Derivatives Containing Two Contiguous Stereocenters. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Qi Xiong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Ling He
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Tian Bai
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xiu‐Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- Suzhou Institute of Wuhan University Suzhou Jiangsu 215123 P. R. China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
44
|
Gao C, Zhang T, Li X, Wu JD, Liu J. Asymmetric Decarboxylative [3+2] Cycloaddition for the Diastereo- and Enantioselective Synthesis of Spiro[2.4]heptanes via Cyclopropanation. Org Chem Front 2022. [DOI: 10.1039/d2qo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric cycloaddition reaction has emerged as one of the powful and reliable strategies for the construction of enantioenriched molecules, especially those with polycyclic frameworks. Herein, we report the asymmetric decarboxylative...
Collapse
|
45
|
Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. J Am Chem Soc 2021; 143:20818-20827. [PMID: 34871492 DOI: 10.1021/jacs.1c09148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Tian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
46
|
Xiong W, Jiang X, Zhang MM, Xiao WJ, Lu LQ. A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with N-acylpyrazoles. Chem Commun (Camb) 2021; 57:13566-13569. [PMID: 34843613 DOI: 10.1039/d1cc05952a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.
Collapse
Affiliation(s)
- Wei Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
47
|
Peng Y, Huo X, Luo Y, Wu L, Zhang W. Enantio- and Diastereodivergent Synthesis of Spirocycles through Dual-Metal-Catalyzed [3+2] Annulation of 2-Vinyloxiranes with Nucleophilic Dipoles. Angew Chem Int Ed Engl 2021; 60:24941-24949. [PMID: 34532948 DOI: 10.1002/anie.202111842] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/14/2022]
Abstract
The development of efficient and straightforward methods for obtaining all optically active isomers of structurally rigid spirocycles from readily available starting materials is of great value in drug discovery and chiral ligand development. However, the stereodivergent synthesis of spirocycles bearing multiple stereocenters remains an unsolved challenge owing to steric hindrance and ring strain. Herein, we report an enantio- and diastereodivergent synthesis of rigid spirocycles through dual-metal-catalyzed [3+2] annulation of oxy π-allyl metallic dipoles with less commonly employed nucleophilic dipoles (imino esters). A series of spiro compounds bearing a pyrroline and an olefin were easily synthesized in an enantio- and diastereodivergent manner (up to 19:1 dr, >99 % ee), which showed great promise as a new type of N-olefin ligand. Preliminary mechanistic studies were also carried out to understand the process of this bimetallic catalysis.
Collapse
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
48
|
Ghosh S, Shilpa S, Athira C, Sunoj RB. Role of Additives in Transition Metal Catalyzed C–H Bond Activation Reactions: A Computational Perspective. Top Catal 2021. [DOI: 10.1007/s11244-021-01527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
50
|
Peng Y, Huo X, Luo Y, Wu L, Zhang W. Enantio‐ and Diastereodivergent Synthesis of Spirocycles through Dual‐Metal‐Catalyzed [3+2] Annulation of 2‐Vinyloxiranes with Nucleophilic Dipoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Liang Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|