1
|
Sharma YB, Das D, Guru MM. Cu(II)-Catalyzed Aminocyclization of N-Propargyl Hydrazones to Substituted Pyrazolines. J Org Chem 2023; 88:16340-16351. [PMID: 37947756 DOI: 10.1021/acs.joc.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
An efficient route for the copper(II)-catalyzed synthesis of substituted pyrazolines from readily accessible N-propargyl hydrazones has been reported under open flask conditions via intramolecular C-N bond formation. N-acyl and N-tosyl-substituted pyrazolines have been prepared in moderate to excellent yields. Mechanistic investigations using NMR, high-resolution mass spectrometry (HRMS), and Hammett analyses suggest that the Cu(II) catalyst generally acts as a Lewis acid to form an iminium-ion intermediate via cyclization, which afforded the desired pyrazolines upon hydrolysis. One progesterone receptor antagonist has also been synthesized utilizing this reaction methodology.
Collapse
Affiliation(s)
- Yogesh Brijwashi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Debosmita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Murali Mohan Guru
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
2
|
Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical-Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. J Org Chem 2022; 87:13138-13153. [PMID: 36166815 DOI: 10.1021/acs.joc.2c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Luoyu Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
3
|
Gulledge ZZ, Duda DP, Dixon DA, Carrick JD. Microwave-Assisted, Metal- and Azide-Free Synthesis of Functionalized Heteroaryl-1,2,3-triazoles via Oxidative Cyclization of N-Tosylhydrazones and Anilines. J Org Chem 2022; 87:12632-12643. [PMID: 36126149 DOI: 10.1021/acs.joc.2c01042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the search for competent soft-Lewis basic complexants for separations continues to evolve toward identification of a chemoselective moiety for speciation of the minor actinides from the electronically similar lanthanides, synthetic methods must congruently evolve. Synthetic options to convergently construct unsymmetric heteroaryl donor complexants incorporating a 1,2,3-triazole from accessible starting materials for evaluation in separation assays necessitated the development of the described methodology. In this report, metal- and azide-free synthesis of diversely functionalized pyridyl-1,2,3-triazole derivatives facilitated by microwave irradiation was leveraged to prepare a novel class of tridentate ligands. The described work negates the incorporation of thermally sensitive and toxic organoazides by using N-tosylhydrazones and anilines as viable synthetic equivalents in an efficient 12 min reaction time. Adaptation to alternative synthons useful for drug discovery was also realized. Method discovery, optimization, N-tosylhydrazone and aniline substrate scope, as well as a preliminary mechanistic hypotheses supported by DFT calculations are reported herein.
Collapse
Affiliation(s)
- Zachary Z Gulledge
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Damian P Duda
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
4
|
Kowalczyk A, Utecht-Jarzyńska G, Mlostoń G, Jasiński M. Trifluoromethylated Pyrazoles via Sequential (3 + 2)-Cycloaddition of Fluorinated Nitrile Imines with Chalcones and Solvent-Dependent Deacylative Oxidation Reactions. Org Lett 2022; 24:2499-2503. [PMID: 35343703 PMCID: PMC9003577 DOI: 10.1021/acs.orglett.2c00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A general approach
for preparation of two types of polyfunctionalized
3-trifluoromethylpyrazoles is reported. The protocol comprises (3
+ 2)-cycloaddition of the in situ generated trifluoroacetonitrile
imines with enones leading to trans-configured 5-acyl-pyrazolines
in a fully regio- and diastereoselective manner. Initially formed
cycloadducts were aromatized by treatment with manganese dioxide.
Depending on the solvent used, the oxidation step either led to fully
substituted pyrazoles (DMSO) or proceeded via a deacylative pathway
to afford 1,3,4-trisubstituted derivatives (hexane) with excellent
selectivity.
Collapse
Affiliation(s)
- Anna Kowalczyk
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland.,The University of Lodz Doctoral School of Exact and Natural Sciences, Banacha 12/16, 90237 Łódź, Poland
| | - Greta Utecht-Jarzyńska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Marcin Jasiński
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| |
Collapse
|
5
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
6
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
7
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
8
|
Aegurla B, Jarwal N, Peddinti RK. Denitrative imino-diaza-Nazarov cyclization: synthesis of pyrazoles. Org Biomol Chem 2020; 18:6100-6107. [PMID: 32785358 DOI: 10.1039/d0ob01200a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An iodine-catalyzed denitrative imino-diaza-Nazarov cyclization (DIDAN) methodology has been developed for the synthesis of pyrazoles with high to excellent yields by using α-nitroacetophenone derivatives and in situ generated hydrazones. The key transformation of this oxidative 4π-electrocyclization proceeds through an enamine-iminium ion intermediate. This rapid one-pot DIDAN protocol results in the selective generation of C-C and C-N bonds and cleavage of a C-N bond.
Collapse
Affiliation(s)
- Balakrishna Aegurla
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Nisha Jarwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
9
|
Veerakanellore GB, Smith CM, Vasiliu M, Oliver AG, Dixon DA, Carrick JD. Synthesis of 1 H-Pyrazol-5-yl-pyridin-2-yl-[1,2,4]triazinyl Soft-Lewis Basic Complexants via Metal and Oxidant Free [3 + 2] Dipolar Cycloaddition of Terminal Ethynyl Pyridines with Tosylhydrazides. J Org Chem 2019; 84:14558-14570. [PMID: 31647644 DOI: 10.1021/acs.joc.9b02088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Soft-Lewis basic complexants that facilitate chemoselective separation of the minor actinides from the lanthanides are critical to the closure of the nuclear fuel cycle. Complexants that modulate covalent orbital interactions with relevant metals of interest can facilitate desired outcomes in liquid-liquid separation, allowing for further transmutative processes that decrease issues related with storage of spent nuclear fuel from energy and weapons production. Synthesis of previously unexplored scaffolds seeks to improve performance over benchmark complexants. In the current work, an intermolecular, thermally initiated, and DBU-assisted [3 + 2] cycloaddition of 3-(6-ethynyl-pyridin-2-yl)-5,6-diphenyl-[1,2,4]triazine dipolarophiles with structurally diverse 4-methylbenzenesulfono-hydrazides afforded 21 yet-to-be reported examples in 42-68% yield and modest regioselectivity for the desired regioisomer. Preparation of requisite starting materials, method definition, dipole and dipolarophile scope, ten-fold scale-up reaction, and downstream functional group interconversion are reported herein.
Collapse
Affiliation(s)
- Giri Babu Veerakanellore
- Department of Chemistry , Tennessee Technological University , Cookeville , Tennessee 38505-0001 , United States
| | - Caris M Smith
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Allen G Oliver
- Department of Chemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - David A Dixon
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Jesse D Carrick
- Department of Chemistry , Tennessee Technological University , Cookeville , Tennessee 38505-0001 , United States
| |
Collapse
|
10
|
Rodriguez Núñez YA, Norambuena M, Romero Bohorquez AR, Morales-Bayuelo A, Gutíerrez M. Efficient synthesis and antioxidant activity of novel N-propargyl tetrahydroquinoline derivatives through the cationic Povarov reaction. Heliyon 2019; 5:e02174. [PMID: 31417970 PMCID: PMC6690562 DOI: 10.1016/j.heliyon.2019.e02174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
New N-propargyl tetrahydroquinolines 6a-g have been synthesized efficiently through the cationic Povarov reaction (a domino Mannich/Friedel-Crafts reaction), catalyzed by Indium (III) chloride (InCl3), from the corresponding N-propargylanilines preformed, formaldehyde and N-vinylformamide, with good to moderate yields. All tetrahydroquinoline derivatives obtained were evaluated in vitro as free radical scavengers. Results showed that compound 6c presents a potent antioxidant effect compared with ascorbic acid, used as a reference compound. ADME predictions also revealed favorable pharmacokinetic parameters for the synthesized compounds, which warrant their suitability as potentials antioxidant. Additionally, a theoretical study using Molecular Quantum Similarity and reactivity indices were developed to discriminate different reactive sites in the new molecules in which the oxidative process occurs.
Collapse
Affiliation(s)
- Yeray A. Rodriguez Núñez
- Laboratorio Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, 3460000, Chile
| | - Maximiliano Norambuena
- Laboratorio Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, 3460000, Chile
| | - Arnold R. Romero Bohorquez
- Grupo de Investigación de Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, A.A. 678, Piedecuesta, Colombia
| | - Alejandro Morales-Bayuelo
- Centro de Investigación de Procesos del Tecnologico Comfenalco (CIPTEC), programa de Ingeniería Industrial, Fundacion Universitaria Tecnologico Comfenalco – Cartagena, Cr 44 D N 30A, 91, Cartagena-Bolívar, Colombia
| | - Margarita Gutíerrez
- Laboratorio Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, 3460000, Chile
| |
Collapse
|
11
|
Ötvös SB, Georgiádes Á, Ozsvár D, Fülöp F. Continuous-flow synthesis of 3,5-disubstituted pyrazoles via sequential alkyne homocoupling and Cope-type hydroamination. RSC Adv 2019; 9:8197-8203. [PMID: 35518676 PMCID: PMC9061249 DOI: 10.1039/c9ra01590f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
A flow chemistry-based approach is presented for the synthesis of 3,5-disubstituted pyrazoles via sequential copper-mediated alkyne homocoupling and Cope-type hydroamination of the intermediary 1,3-diynes in the presence of hydrazine as nucleophilic reaction partner. The proposed multistep methodology offers an easy and direct access to valuable pyrazoles from cheap and readily available starting materials and without the need for the isolation of any intermediates. A telescoped continuous-flow method is presented for the synthesis of 3,5-disubstituted pyrazoles via copper-mediated alkyne homocoupling and Cope-type hydroamination of the intermediary 1,3-dialkynes.![]()
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Center
- H-6720 Szeged
- Hungary
| | - Ádám Georgiádes
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Center
- H-6720 Szeged
- Hungary
| | - Dániel Ozsvár
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Center
- H-6720 Szeged
- Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Center
- H-6720 Szeged
- Hungary
| |
Collapse
|