1
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
2
|
Selenium-containing azoles: synthesis and possibilities of application. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Rios EAM, Gomes CMB, Silvério GL, Luz EQ, Ali S, D'Oca CDRM, Albach B, Campos RB, Rampon DS. Silver-catalyzed direct selanylation of indoles: synthesis and mechanistic insights. RSC Adv 2023; 13:914-925. [PMID: 36686957 PMCID: PMC9811358 DOI: 10.1039/d2ra06813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
Herein we describe the Ag(i)-catalyzed direct selanylation of indoles with diorganoyl diselenides. The reaction gave 3-selanylindoles with high regioselectivity and also allowed direct access to 2-selanylindoles when the C3 position of the indole ring was blocked via a process similar to Plancher rearrangement. Experimental analyses and density functional theory calculations were carried out in order to picture the reaction mechanism. Among the pathways considered (via concerted metalation-deprotonation, Ag(iii), radical, and electrophilic aromatic substitution), our findings support a classic electrophilic aromatic substitution via Lewis adducts between Ag(i) and diorganoyl diselenides. The results also afforded new insights into the interactions between Ag(i) and diorganoyl diselenides.
Collapse
Affiliation(s)
- Elise Ane Maluf Rios
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Carla M B Gomes
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Gabriel L Silvério
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Eduardo Q Luz
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Sher Ali
- University of São Paulo, Faculty of Animal Science and Food Engineering Pirassununga SP Brazil
| | - Caroline da Ros Montes D'Oca
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Breidi Albach
- Health Department, Unicesumar - The University Center of Maringá Curitiba PR 81070-190 Brazil
| | - Renan B Campos
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná Rua Deputado Heitor de Alencar Furtado, 5000 81280-340 Curitiba Brazil
| | - Daniel S Rampon
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| |
Collapse
|
4
|
Phakdeeyothin K, Viriyanukul T, Udomsasporn K, Phomphrai K, Yotphan S. Metal‐Free Aminomethylation of Pyrazolones: Direct Access to 4‐Aminomethylated Pyrazolones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Tarm Viriyanukul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kwanchanok Udomsasporn
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| |
Collapse
|
5
|
Sanachai K, Mahalapbutr P, Hengphasatporn K, Shigeta Y, Seetaha S, Tabtimmai L, Langer T, Wolschann P, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. Pharmacophore-Based Virtual Screening and Experimental Validation of Pyrazolone-Derived Inhibitors toward Janus Kinases. ACS OMEGA 2022; 7:33548-33559. [PMID: 36157769 PMCID: PMC9494641 DOI: 10.1021/acsomega.2c04535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen40002, Thailand
| | - Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Supaphorn Seetaha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand
| | - Thierry Langer
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, ViennaA-1090, Austria
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna1090, Austria
| | - Tanakorn Kittikool
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Sirilata Yotphan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
6
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
7
|
Beukeaw D, Rattanasupaponsak N, Kittikool T, Phakdeeyothin K, Phomphrai K, Yotphan S. Metal‐Free Site‐Selective Direct Oxidative Phosphorylation of Pyrazolones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Wen K, Wu Y, Chen J, Shi J, Zheng M, Yao X, Tang X. Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Pyrazolones. ACS OMEGA 2022; 7:5274-5282. [PMID: 35187342 PMCID: PMC8851627 DOI: 10.1021/acsomega.1c06443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 05/05/2023]
Abstract
A copper-mediated decarboxylative coupling reaction of 3-indoleacetic acids with pyrazolones was described. This protocol realized new functionalization of pyrazolones under simple reaction conditions and exhibited high functional group compatibility and broad substrate scope. Notably, the products displayed antiproliferative activity against cancer cells.
Collapse
|
10
|
Rampon D, Seckler D, da Luz EQ, Paixão DB, Larroza AME, Schneider PH, Alves D. Transition metal catalysed direct sulfanylation of unreactive C-H bonds: an overview of the last two decades. Org Biomol Chem 2022; 20:6072-6177. [DOI: 10.1039/d2ob00986b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations have represented...
Collapse
|
11
|
CuI-catalyzed sulfenylation of 1-aryl trifluoromethyl pyrazolones: Direct formation of C-S-C bond using aryl iodides and carbon disulfide. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Panigrahi A, Muniraj N, Prabhu KR. N-Triflination of pyrazolones: a new method for N-S bond formation. Org Biomol Chem 2021; 19:5534-5538. [PMID: 34105585 DOI: 10.1039/d1ob00862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple method, which takes place quickly in 5 min, is developed for the N-triflination of pyrazolones using CF3SO2Na (Langlois reagent) and phenyliodine(iii)bis(trifluoroacetate) (PIFA). This reaction takes place at the imine nitrogen centre instead of the more reactive C4-position, forming a new N-S bond. A variety of pyrazolone derivatives were subjected to the reaction. Unlike the previous reports on sulfenylation or sulfonylation of pyrazolone, wherein the corresponding C-S bond is formed, this new method leads to the formation of the hetero-hetero atom bond (N-S bond) at room temperature.
Collapse
Affiliation(s)
- Ahwan Panigrahi
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Nachimuthu Muniraj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| |
Collapse
|
13
|
Free-radical and electrophilic functionalization of pyrazol-3-ones with C–O or C–N bond formation (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02885-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Akhmadiev NS, Mescheryakova ES, Akhmetova VR, Khairullina VR, Khalilov LM, Ibragimov AG. Synthesis, Crystal Structure and Docking Studies as Potential Anti-Inflammatory Agents of Novel Antipyrine Sulfanyl Derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Batista GMF, de Castro PP, dos Santos JA, Skrydstrup T, Amarante GW. Synthetic developments on the preparation of sulfides from thiol-free reagents. Org Chem Front 2021. [DOI: 10.1039/d0qo01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review covers the main thiolating reagents with respect to their characteristics and reactivities. In fact, they are complementary to each other and bring different thiolation strategies, avoiding the hazardous thiol derivatives.
Collapse
Affiliation(s)
- Gabriel M. F. Batista
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
- Carbon Dioxide Activation Center (CADIAC)
| | - Pedro P. de Castro
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)
- Interdisciplinary Nanoscience Center (iNANO)
- and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
| | | |
Collapse
|
16
|
Jiang S, Hsieh W, Chen W, Liao J, Chiang P, Lin YA. Synthesis of Thiol‐Containing Oligopeptides via Tandem Activation of γ‐Thiolactones by Silver‐DABCO Pair. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng‐Yuan Jiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wen‐Tsai Hsieh
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wei‐Shuo Chen
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Jia‐Shiang Liao
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Po‐Yu Chiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Yuya A. Lin
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
17
|
Konishi K, Yasui M, Okuhira H, Takeda N, Ueda M. Copper-Catalyzed Sequential Cyclization/Migration of Alkynyl Hydrazides for Construction of Ring-Expanded N-N Fused Pyrazolones. Org Lett 2020; 22:6852-6857. [PMID: 32822198 DOI: 10.1021/acs.orglett.0c02378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A copper-catalyzed sequential cyclization/migration reaction of alkynyl hydrazides for the synthesis of ring-expanded N-N fused pyrazolones was developed. Control experiments indicate that the copper-ligand complex plays an essential role in the reaction. This approach features a broad scope including some functional group tolerance as well as a nucleophilic addition/1,3-migration/formal 1,2-migration sequence. This protocol provides simple manipulation and less waste due to high yield and atom economy. The synthetic utility of N-N fused pyrazolones was also demonstrated by further transformations.
Collapse
Affiliation(s)
- Keiji Konishi
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Hitomi Okuhira
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
18
|
|
19
|
Bugaenko DI, Karchava AV, Yurovskaya MA. The versatility of DABCO: synthetic applications of its basic, nucleophilic, and catalytic properties. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02655-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Kittikool T, Yotphan S. Metal-Free Direct C-H Thiolation and Thiocyanation of Pyrazolones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901770] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
21
|
Zhang Y, Nie LJ, Luo L, Mao JX, Liu JX, Xu GH, Chen D, Luo HQ. The selective condensation of pyrazolones to isatins in aqueous medium. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
|
23
|
Phakdeeyothin K, Yotphan S. Metal-free regioselective direct thiolation of 2-pyridones. Org Biomol Chem 2019; 17:6432-6440. [PMID: 31218319 DOI: 10.1039/c9ob01061k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly regioselective metal-free direct C-H thiolation of 2-pyridones with disulfides or thiols has been developed. A combination of persulfate and a commercially available halide source such as LiCl, NCS or I2 enables the successful direct incorporation of a sulfide moiety into the 5-position of pyridone under mild conditions, providing a useful and convenient approach for the preparation of a diverse array of 5-thio-substituted pyridones in moderate to excellent yields.
Collapse
Affiliation(s)
- Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Chagarovskiy AO, Kuznetsov VV, Ivanova OA, Goloveshkin AS, Levina II, Makhova NN, Trushkov IV. Synthesis of 1-Substituted Pyrazolines by Reaction of Donor-Acceptor Cyclopropanes with 1,5-Diazabicyclo[3.1.0]hexanes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexey O. Chagarovskiy
- Oncology and Immunology; Dmitry Rogachev National Research Center of Pediatric Hematology; 117997 Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences; Leninsky pr. 47 119991 Moscow Russian Federation
| | - Vladimir V. Kuznetsov
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences; Leninsky pr. 47 119991 Moscow Russian Federation
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences; Leninsky pr. 47 119991 Moscow Russian Federation
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Alexander S. Goloveshkin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova 28 119991 Moscow Russian Federation
| | - Irina I. Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences; Kosygina 4 119334 Moscow Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences; Leninsky pr. 47 119991 Moscow Russian Federation
| | - Igor V. Trushkov
- Oncology and Immunology; Dmitry Rogachev National Research Center of Pediatric Hematology; 117997 Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences; Leninsky pr. 47 119991 Moscow Russian Federation
| |
Collapse
|
25
|
Noikham M, Yotphan S. Copper-Catalyzed Regioselective Direct C-H Thiolation and Thiocyanation of Uracils. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Medena Noikham
- Center of Excellence for Innovation in Chemistry (PERCH-CIC); Department of Chemistry, Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC); Department of Chemistry, Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
26
|
Jakubczyk M, Mkrtchyan S, Madura ID, Marek PH, Iaroshenko VO. Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Adv 2019; 9:25368-25376. [PMID: 35530113 PMCID: PMC9070035 DOI: 10.1039/c9ra05004c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/09/2020] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
A one-pot, Cu-catalyzed direct C–H arylselenation protocol using elemental Se and aryl iodides was developed for nitro-substituted, N-alkylated pyrazoles, imidazoles and other heterocycles including 4H-chromen-4-one. This general and concise method allows one to obtain a large number of unsymmetrical heteroaryl selenides bearing a variety of substituents. The presence of the nitro group was confirmed to be essential for the C–H activation and can also be used for further functionalisation and manipulation. Several examples of heteroannulated benzoselenazines were also synthesized using the developed synthetic protocol. In this work, we elaborated a general and straightforward method which permits the rapid assembly of unsymmetrical heteroaryl-aryl selenides containing 4-nitropyrazole, 4-nitroimidazole and a few other heterocyclic scaffolds.![]()
Collapse
Affiliation(s)
- Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Izabela D. Madura
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Paulina H. Marek
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| |
Collapse
|
27
|
Wu H, Luo S, Cao L, Shi H, Wang B, Wang Z. DABCO‐Mediated C−O Bond Formation from C
sp2
‐Halogen Bond‐Containing Compounds and Alkyl Alcohols. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han‐Qing Wu
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Shi‐He Luo
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Liang Cao
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Hao‐Nan Shi
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Bo‐Wen Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhao‐Yang Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| |
Collapse
|
28
|
|
29
|
Kittikool T, Thupyai A, Phomphrai K, Yotphan S. Copper/Persulfate-Promoted Oxidative Decarboxylative C−H Acylation of Pyrazolones with α-Oxocarboxylic Acids: Direct Access to 4-Acylpyrazolones under Mild Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800464] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tanakorn Kittikool
- Center of Excellence for Innovation in Chemistry (PERCH-CIC); Department of Chemistry; Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| | - Akkharaphong Thupyai
- Center of Excellence for Innovation in Chemistry (PERCH-CIC); Department of Chemistry; Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); Wangchan Rayong 21210 Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC); Department of Chemistry; Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| |
Collapse
|