1
|
Smith KT, Stylianou KC. Multivariate metal-organic frameworks generated through post-synthetic modification: impact and future directions. Dalton Trans 2023; 52:16578-16585. [PMID: 37855087 DOI: 10.1039/d3dt01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Reticular chemistry has proven to be invaluable over time, thanks to the structural versatility, and tailored porosity observed in structures like metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and metal-organic polyhedra (MOPs). Despite the wide array of ligands and metals available for synthesizing MOFs, they are still somewhat constrained by the reliance on de novo conditions and the focus on generating MOFs with single ligand and metal. To surpass these limitations, researchers have established strategies to generate multivariate (MTV) MOF structures incorporating more than one ligand/metal into the crystal lattice. MTV-MOFs have demonstrated enhanced properties by virtue of the additional functionalities incorporated within their structures. One approach to developing MTV-MOFs is through post-synthetic modification (PSM), where new functionalities are introduced after the initial synthesis, thereby achieving the enhanced properties of MTV-MOFs even in cases where the new functionalities are incompatible with MOF synthesis.
Collapse
Affiliation(s)
- Kyle T Smith
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, OR 97331, Corvallis, Oregon, USA.
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, OR 97331, Corvallis, Oregon, USA.
| |
Collapse
|
2
|
Adoni P, Romanyuk A, Overton TW, Fernandez-Trillo P. Polymer-induced biofilms for enhanced biocatalysis. MATERIALS HORIZONS 2022; 9:2592-2602. [PMID: 35912866 PMCID: PMC9528183 DOI: 10.1039/d2mh00607c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The intrinsic resilience of biofilms to environmental conditions makes them an attractive platform for biocatalysis, bioremediation, agriculture or consumer health. However, one of the main challenges in these areas is that beneficial bacteria are not necessarily good at biofilm formation. Currently, this problem is solved by genetic engineering or experimental evolution, techniques that can be costly and time consuming, require expertise in molecular biology and/or microbiology and, more importantly, are not suitable for all types of microorganisms or applications. Here we show that synthetic polymers can be used as an alternative, working as simple additives to nucleate the formation of biofilms. Using a combination of controlled radical polymerization and dynamic covalent chemistry, we prepare a set of synthetic polymers carrying mildly cationic, aromatic, heteroaromatic or aliphatic moieties. We then demonstrate that hydrophobic polymers induce clustering and promote biofilm formation in MC4100, a strain of Escherichia coli that forms biofilms poorly, with aromatic and heteroaromatic moieties leading to the best performing polymers. Moreover, we compare the effect of the polymers on MC4100 against PHL644, an E. coli strain that forms biofilms well due to a single point mutation which increases expression of the adhesin curli. In the presence of selected polymers, MC4100 can reach levels of biomass production and curli expression similar or higher than PHL644, demonstrating that synthetic polymers promote similar changes in microbial physiology than those introduced following genetic modification. Finally, we demonstrate that these polymers can be used to improve the performance of MC4100 biofilms in the biocatalytic transformation of 5-fluoroindole into 5-fluorotryptophan. Our results show that incubation with these synthetic polymers helps MC4100 match and even outperform PHL644 in this biotransformation, demonstrating that synthetic polymers can underpin the development of beneficial applications of biofilms.
Collapse
Affiliation(s)
- Pavan Adoni
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrey Romanyuk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
3
|
Jimaja S, Xie Y, Foster JC, Taton D, Dove AP, O'Reilly RK. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polym Chem 2021. [DOI: 10.1039/d0py00791a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) as a straightforward and versatile methodology to achieve functional helix-containing polymeric nano-objects.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | - Yujie Xie
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | | | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques
- Université de Bordeaux/CNRS École Nationale Supérieure de Chimie
- de Biologie & de Physique
- 33607 Cedex Pessac
- France
| | - Andrew P. Dove
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | | |
Collapse
|
4
|
Yang G, Wang J, Yan Y, Hai Z, Hua Z, Chen G. Multi-Stimuli-Triggered Shape Transformation of Polymeric Filaments Derived from Dynamic Covalent Block Copolymers. Biomacromolecules 2020; 21:4159-4168. [PMID: 32897696 DOI: 10.1021/acs.biomac.0c00956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using dynamic polymers to achieve the morphology transformation of polymeric assemblies under different conditions is challenging. Herein, we reported diversiform shape transformation of multi-responsive polymer filaments, which were self-assembled by a new kind of amphiphilic block copolymer (PVEG-PVEA) possessing dynamic and reversible acylhydrazone bonds through reacting benzaldehyde-containing block copolymers poly(vinylbenzaldehyde)-b-poly(N-(4-vinylbenzyl)-N,N-diethylamine) (PVBA-PVEA) with acylhydrazine-modified oligoethylene glycol. It was found that the resulting amphiphilic and dynamic PVEG-PVEA was capable of hierarchically self-assembling into intriguing core-branched filaments in aqueous solution. Notably, the features of acylhydrazone bonds and PVEA block endow the filaments with multi-responsiveness including acid, base, and temperature, leading to the multiple morphological transformations under such stimuli. Moreover, the core-branched filaments would further transform into polymeric braided bundles driven by hydrogen-bonding interactions of amide bonds. It is noteworthy that both core-branched filaments and braided bundles made from polymers are quite rare. These diversiform polymeric assemblies and their morphological evolution were characterized by TEM, Cryo-TEM, SEM, and DLS. Finally, we used PVBA-PVEA as a platform to facilely prepare functional polymers, such as glycopolymers via the reaction of amino-containing sugars and aldehyde groups. The obtained glycopolymers self-assembled into glycofibers for the biomimicry of glycans via binding with lectins. These findings not only are conducive to understanding of the stimulated shape change process of dynamic polymeric assemblies in water but also provide a new method for the facile fabrication of smart and functional polymeric assemblies for different potential applications, such as biomimicry and targeted drug nanocarriers or delivery vehicles.
Collapse
Affiliation(s)
- Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.,The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Jie Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yangyang Yan
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Laezza A, Georgiou PG, Richards SJ, Baker AN, Walker M, Gibson MI. Protecting Group Free Synthesis of Glyconanoparticles Using Amino-Oxy-Terminated Polymer Ligands. Bioconjug Chem 2020; 31:2392-2403. [PMID: 32951418 DOI: 10.1021/acs.bioconjchem.0c00465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycomaterials display enhanced binding affinity to carbohydrate-binding proteins due to the nonlinear enhancement associated with the cluster glycoside effect. Gold nanoparticles bearing glycans have attracted significant interest in particular. This is due to their versatility, their highly tunable gold cores (size and shape), and their application in biosensors and diagnostic tools. However, conjugating glycans onto these materials can be challenging, necessitating either multiple protecting group manipulations or the use of only simple glycans. This results in limited structural diversity compared to glycoarrays which can include hundreds of glycans. Here we report a method to generate glyconanoparticles from unprotected glycans by conjugation to polymer tethers bearing terminal amino-oxy groups, which are then immobilized onto gold nanoparticles. Using an isotope-labeled glycan, the efficiency of this reaction was probed in detail to confirm conjugation, with 25% of end-groups being functionalized, predominantly in the ring-closed form. Facile post-glycosylation purification is achieved by simple centrifugation/washing cycles to remove excess glycan and polymer. This streamlined synthetic approach may be particularly useful for the preparation of glyconanoparticle libraries using automation, to identify hits to be taken forward using more conventional synthetic methods. Exemplar lectin-binding studies were undertaken to confirm the availability of the glycans for binding and show this is a powerful tool for rapid assessment of multivalent glycan binding.
Collapse
|
6
|
Love D, Kim K, Domaille DW, Williams O, Stansbury J, Musgrave C, Bowman C. Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polym Chem 2019; 10:5790-5804. [PMID: 31749894 PMCID: PMC6865069 DOI: 10.1039/c9py01199d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the powerful nature of the aza-Michael reaction for generating C-N linkages and bioactive moieties, the bis-Michael addition of 1° amines remains ineffective for the synthesis of functional, step-growth polymers due to the drastic reduction in reactivity of the resulting 2° amine mono-addition adduct. In this study, a wide range of commercial hydrazides are shown to effectively undergo the bis-Michael reaction with divinyl sulfone (DVS) and 1,6-hexanediol diacrylate (HDA) under catalyst-free, thermal conditions to afford moderate to high molecular weight polymers with M n = 3.8-34.5 kg mol-1. The hydrazide-Michael reactions exhibit two distinctive, conversion-dependent kinetic regimes that are 2nd-order overall, in contrast to the 3rd-order nature of amines previously reported. The mono-addition rate constant was found to be 37-fold greater than that of the bis-addition at 80 °C for the reaction between benzhydrazide and DVS. A significant majority (12 of 15) of the hydrazide derivatives used here show excellent bis-Michael reactivity and achieve >97% conversions after 5 days. This behavior is consistent with calculations that show minimal variance of electron density on the N-nucleophile among the derivatives studied. Reactivity differences between hydrazides and hexylamine are also explored. Overall, the difference in reactivity between hydrazides and amines is attributed to the adjacent nitrogen atom in hydrazides that acts as an efficient hydrogen-bond donor that facilitates intramolecular proton-transfer following the formation of the zwitterion intermediate. This effect not only activates the Michael acceptor but also coordinates with additional Michael acceptors to form an intermolecular reactant complex.
Collapse
Affiliation(s)
- Dillon Love
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Olivia Williams
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
- School of Dental Medicine, Craniofacial Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Charles Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Christopher Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Juanes M, Creese O, Fernández-Trillo P, Montenegro J. Messenger RNA delivery by hydrazone-activated polymers. MEDCHEMCOMM 2019; 10:1138-1144. [PMID: 31391886 PMCID: PMC6640546 DOI: 10.1039/c9md00231f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
The intracellular delivery of DNA and RNA therapeutics requires the assistance of vectors and/or nucleotide modifications to protect the nucleic acids against host nucleases and promote cellular internalization and release. Recently, messenger RNA (mRNA) has attracted much attention due to its transient activity and lack of genome permanent recombination and persistent expression. Therefore, there is a strong interest in the development of conceptually new non-viral vectors with low toxicity that could improve mRNA transfection efficiency. We have recently introduced the potential of polyhydrazones and the importance of the degree of polymerization for the delivery of siRNA and plasmid DNA. Here, we demonstrate that this technology can be easily adapted to the more interesting complexation and delivery inside living cells of mRNA. The polyplexes resulting from the combination of the amphiphilic polyhydrazone were characterized and the transfection efficiency and cell viability were studied for a discrete collection of functionalized polyhydrazones. The results obtained demonstrated the versatility of these polymeric vectors as excellent candidates for the delivery of mRNA and validate the easy adaptability of the technology to more sensitive and therapeutically relevant nucleic acids.
Collapse
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Oliver Creese
- School of Chemistry , University of Birmingham , Birmingham B15 2TT , UK .
| | | | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
8
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
9
|
Priegue JM, Lostalé-Seijo I, Crisan D, Granja JR, Fernández-Trillo F, Montenegro J. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018; 19:2638-2649. [PMID: 29653048 PMCID: PMC6041776 DOI: 10.1021/acs.biomac.8b00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA. The hydrazone formation reactions with a mixture of cationic and hydrophobic aldehydes proceed in physiologically compatible aqueous conditions, and the resulting amphiphilic polyhydrazones are directly combined with the biological cargo without any purification step. This methodology allowed the preparation of stable polyplexes with a suitable size and zeta potential to achieve an efficient encapsulation and intracellular delivery of the DNA cargo. Simple formulations that performed with efficiencies and cell viabilities comparable to the current gold standard were identified. Furthermore, the internalization mechanism was studied via internalization experiments in the presence of endocytic inhibitors and fluorescence microscopy. The results reported here confirmed that the polyhydrazone functionalization is a suitable strategy for the screening and identification of customized polymeric vehicles for the delivery of different nucleotide cargos.
Collapse
Affiliation(s)
- Juan M. Priegue
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Daniel Crisan
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Juan R. Granja
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
10
|
Wang Y, Zhang XY, Luo YL, Xu F, Chen YS, Su YY. Dual stimuli-responsive Fe 3O 4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications. J Nanobiotechnology 2017; 15:76. [PMID: 29078797 PMCID: PMC5658962 DOI: 10.1186/s12951-017-0309-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. RESULTS Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) block copolymers (Fe3O4-g-PAA-b-PMAEFC) were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core-shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species. CONCLUSION This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Xue-Yin Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Yu-Yu Su
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
11
|
Zhu C, Xi C, Doro W, Wang T, Zhang X, Jin Y, Zhang W. Tuning the physical properties of malleable and recyclable polyimine thermosets: the effect of solvent and monomer concentration. RSC Adv 2017. [DOI: 10.1039/c7ra10956c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the effect of solvent choice and polymerization rate on the physical properties of polyimine based malleable thermosets.
Collapse
Affiliation(s)
- Chengpu Zhu
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Cally Xi
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - William Doro
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Tianyi Wang
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Xin Zhang
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Yinghua Jin
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Wei Zhang
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|