1
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
2
|
Tie S, Xiang S, Chen Y, Qiao F, Cui W, Su W, Tan M. Facile synthesis of food-grade and size-controlled nanocarriers based on self-assembly of procyanidins and phycocyanin. Food Funct 2022; 13:4023-4031. [PMID: 35315469 DOI: 10.1039/d1fo04222j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocarriers provide the possibility to overcome the low solubility, poor stability, and low bioavailability of functional factors. However, most nanocarriers do not directly participate in the corresponding effects of functional factors, such as treating inflammatory bowel disease but lack the means to control their size accurately. Herein, nanocarriers were prepared by a one-pot method, using food-grade antioxidant procyanidins, vanillin, and phycocyanin as raw materials. The strategy involved the Mannich reaction among the phenolic hydroxyl groups of procyanidins, the aldehyde groups of vanillin, and the amino groups of phycocyanin. The obtained nanocarriers displayed controllable sizes ranging from 130 to 750 nm, showing good antioxidant capacity in scavenging free radicals and were biocompatible to Caco-2 cells and RAW 264.7 macrophages. Nanocarriers also exhibited an inhibitory effect on cell damage induced by acrylamide and H2O2. Moreover, the designed nanocarriers could be used for delivering active ingredients such as lutein, which showed a uniform spherical distribution, high encapsulation efficiency, and good biocompatibility. This work provides a facile synthesis method to prepare food-grade nanocarriers with functional properties, which can be potentially used in the delivery of functional factors.
Collapse
Affiliation(s)
- Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Fengzhi Qiao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
3
|
Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao LY, Hou Y, Wu Z, Du Y, Fan H, Tian J, Liang XJ. Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. ACS NANO 2019; 13:8811-8825. [PMID: 31328922 DOI: 10.1021/acsnano.9b01979] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cancer metastasis is a serious concern and a major reason for treatment failure. Herein, we have reported the development of an effective and safe nanotherapeutic strategy that can eradicate primary tumors, inhibit metastasizing to lung, and control the metastasis and growth of distant tumors. Briefly, ferrimagnetic vortex-domain iron oxide nanoring (FVIO)-mediated mild magnetic hyperthermia caused calreticulin (CRT) expression on the 4T1 breast cancer cells. The CRT expression transmitted an "eat-me" signal and promoted phagocytic uptake of cancer cells by the immune system to induce an efficient immunogenic cell death, further leading to the macrophage polarization. This mild thermotherapy promoted 88% increase of CD8+ cytotoxic T lymphocyte infiltration in distant tumors and triggered immunotherapy by effectively sensitizing tumors to the PD-L1 checkpoint blockade. The percentage of CD8+ cytotoxic T lymphocytes can be further increased from 55.4% to 64.5% after combining with PD-L1 blockade. Moreover, the combination treatment also inhibited the immunosuppressive response of the tumor, evidenced by significant down-regulation of myeloid-derived suppressor cells (MDSCs). Our results revealed that the FVIO-mediated mild magnetic hyperthermia can activate the host immune systems and efficiently cooperate with PD-L1 blockade to inhibit the potential metastatic spreading as well as the growth of distant tumors.
Collapse
Affiliation(s)
- Xiaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
- The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , China
| | - Jianjun Zheng
- Department of Radiology, Hwa Mei Hospital , University of Chinese Academy of Sciences , Ningbo No.2 Hospital, Ningbo , Zhejiang 315010 , China
| | - Wei Sun
- Department of Radiology, Hwa Mei Hospital , University of Chinese Academy of Sciences , Ningbo No.2 Hospital, Ningbo , Zhejiang 315010 , China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
| | - Ningqiang Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
| | - Yanyun Wang
- The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , China
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Ling-Yun Zhao
- Key Laboratory of Advanced Materials, School of Material Science & Engineering , Tsinghua University , Beijing 100084 , China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School , Nanjing University , Nanjing 210093 , China
- Jiangsu Key Laboratory of Molecular Medicine , Nanjing University , Nanjing , 210093 , China
| | - Zhibing Wu
- Department of Radiation Oncology , Zhejiang Hospital , Hangzhou , Zhejiang 310013 , China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
4
|
Xiong H, Xu J, Yuan C, Wang X, Wen W, Zhang X, Wang S. Oxidation-controlled synthesis of fluorescent polydopamine for the detection of metal ions. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
6
|
Xu D, Zeng S, Liu M, Chen J, Huang H, Deng F, Tian J, Wen Y, Zhang X, Wei Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Chen Y, Huang Z, Liu X, Mao L, Yuan J, Zhang X, Tao L, Wei Y. A novel AIE-active dye for fluorescent nanoparticles by one-pot combination of Hantzsch reaction and RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Adv 2019; 9:32601-32607. [PMID: 35529733 PMCID: PMC9073198 DOI: 10.1039/c9ra06452d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
In recent years, amphiphilic AIE-active fluorescent organic materials with aggregation-induced emission (AIE) properties have been extensively investigated due to their excellent properties. This study describes the synthesis of a novel AIE-active dye of tetraphenylethylene diphenylaldehyde (TPDA). As compared with the reported fluorescent dye TPB, the fluorescence intensity of TPDA is significantly enhanced with the distinct red shift of emission wavelength. Subsequently, the corresponding novel polymers PEG-TPD were obtained through the one-pot combination of Hantzsch reaction and RAFT polymerization. The structure of PEG-TPD1 by the two-step process was similar with that of PEG-TPD2 by the one-pot method at the same feeding ratio of TPDA and PEGMA. The molecular weights (Mn) of the polymers PEG-TPD1 and PEG-TPD2 were respectively 52 000 and 28 000 with narrow polydispersity index (PDI), and their molar fractions of TPDA were respectively about 9.5% and 14.3%, indicating that the degree of Hantzsch reaction in the one-pot process was more complete. Subsequently, the effect of feed ratio of TPDA and PEGMA on polymer structure was further studied. It can be seen that the Mn of the polymers gradually increases as the proportion of TPDA increases. In aqueous solution, these amphiphilic PEG-TPD polymers tended to self-assemble into corresponding fluorescent polymer nanoparticles (FPNs). The diameter of PEG-TPD2 FPNs ranged from 200 to 300 nm, and their fluorescence emission spectra have maximum emission peak at 509 nm. The PEG-TPD FPNs have significant advantages such as good fluorescence intensity, high water dispersibility, good biocompatibility and easy absorption by cells, which can be attractively used in the field of bioimaging. This work reported the fabrication of a novel AIE-active dye and its amphiphilic PEG-TPD fluorescent polymers via one-pot combination of RAFT polymerization and Hantzsch reaction, which showed potential applications in bioimaging.![]()
Collapse
Affiliation(s)
- Yali Chen
- School of Materials & Food Engineering
- Zhongshan Institute
- University of Electronic Science & Technology of China
- Zhongshan
- P. R. China
| | - Zengfang Huang
- School of Materials & Food Engineering
- Zhongshan Institute
- University of Electronic Science & Technology of China
- Zhongshan
- P. R. China
| | - Xiaobo Liu
- School of Materials and Energy
- University of Electronic Science & Technology of China
- Chengdu
- P. R. China
| | - Liucheng Mao
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jinying Yuan
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330047
- P. R. China
| | - Lei Tao
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yen Wei
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
8
|
Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y. Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:310-317. [DOI: 10.1016/j.msec.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
9
|
Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J Colloid Interface Sci 2018; 519:137-144. [DOI: 10.1016/j.jcis.2018.01.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|