1
|
Wang T, Gao D, Yin H, Zhao J, Wang X, Niu H. Kinetic Study of the Diels-Alder Reaction between Maleimide and Furan-Containing Polystyrene Using Infrared Spectroscopy. Polymers (Basel) 2024; 16:441. [PMID: 38337328 DOI: 10.3390/polym16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The Diels-Alder (D-A) reaction between furan and maleimide is a thermally reversible reaction that has become a vital chemical technique for designing polymer structures and functions. The kinetics of this reaction, particularly in polymer bulk states, have significant practical implications. In this study, we investigated the feasibility of utilizing infrared spectroscopy to measure the D-A reaction kinetics in bulk-state polymer. Specifically, we synthesized furan-functionalized polystyrene and added a maleimide small-molecule compound to form a D-A adduct. The intensity of the characteristic absorption peak of the D-A adduct was quantitatively measured by infrared spectroscopy, and the dependence of conversion of the D-A reaction on time was obtained at different temperatures. Subsequently, the D-A reaction apparent kinetic coefficient kapp and the Arrhenius activation energy Ea,D-A were calculated. These results were compared with those determined from 1H-NMR in the polymer solution states.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dali Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hua Yin
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jiawei Zhao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingguo Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hui Niu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Wang X, Li J, Jiang L, Wang C. Determination of organic and inorganic Cl in gaseous ethylene based on gas-liquid equal mass response followed by automatic quick furnace-ion chromatography. J Chromatogr A 2024; 1713:464559. [PMID: 38101303 DOI: 10.1016/j.chroma.2023.464559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Herein, a practical method for the determination of organic and inorganic Cl in gaseous ethylene by liquid standard samples was established; and then, the effects of various speciation and matrices on results were investigated followed by automatic quick furnace-ion chromatography (AQF-IC) analysis. From the evaluation of speciation and matrices, unified equation was explored and the method for accurately determining trace HCl with strong adsorption was also developed. First, summarize regularity that the light oil liquid standards themselves conformed to equal Cl mass response by AQF-IC (R2=0.99993). Then, the actual Cl mass in standard gas at 4 levels with different speciation and matrices were calculated by the same regularity based on the assumption of not affected by speciation or matrix change. The gas mass was accurately calculated based on Van der Waals' Equation. As a result, combined with the theoretical Cl mass calculated by equation, the recoveries of the organic and inorganic Cl were in the range of 93.0%-101.4% [2.0 µmol/mol of CH3Cl/(N2+ethylene)], 93.4%-104.9% (10.1 µmol/mol of CH3Cl/N2), 101.6%-111.2% (20.2 µmol/mol of CH3Cl/ethylene) and 95.3%-101.0% (11.0 mg/m3 of HCl/N2), respectively, indicating the successful verification of above assumption rather than applying more exploration to rebuild relationships between different systems. As proof of principle and for more verification, system of CH2Cl2/He gas standard sample was prepared to explore the quantitative accuracy in more speciation with recoveries in the range of 91.3%-98.5%. In addition, the detection limit of Cl content based on S/N = 3 for ethylene was 0.06 mg/kg. Intra-day and inter-day relative standard devations (RSDs) were in the range of 9.3%-12.0% (≤1.0 mg/kg) and 2.5%-4.4% (>1.0 mg/kg). Finally, the developed method based on gas-liquid equal mass response was successfully applied in the actual samples of light olefins such as ethylene and propylene.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd, China.
| | - Jiwen Li
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd, China
| | - Liyan Jiang
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd, China
| | - Chuan Wang
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd, China
| |
Collapse
|
3
|
Gu S, Xiao YF, Tan SH, Liu BW, Guo DM, Wang YZ, Chen L. Neighboring Molecular Engineering in Diels-Alder Chemistry Enabling Easily Recyclable Carbon Fiber Reinforced Composites. Angew Chem Int Ed Engl 2023:e202312638. [PMID: 37759361 DOI: 10.1002/anie.202312638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a "one-stone-two-birds" strategy of lower rotational energy barrier (Er ) phosphate-derived Diels-Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.
Collapse
Affiliation(s)
- Song Gu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan-Fang Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shi-Huan Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - De-Ming Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Soares FA, Steinbüchel A. Enzymatic and Chemical Approaches for Post-Polymerization Modifications of Diene Rubbers: Current state and Perspectives. Macromol Biosci 2021; 21:e2100261. [PMID: 34528407 DOI: 10.1002/mabi.202100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Diene rubbers are polymeric materials which present elastic properties and have double bonds in the macromolecular backbone after the polymerization process. Post-polymerization modifications of rubbers can be conducted by enzymatic or chemical methods. Enzymes are environmentally friendly catalysts and with the increasing demand for rubber waste management, biodegradation and biomodifications have become hot topics of research. Some rubbers are renewable materials and are a source of organic molecules, and biodegradation can be conducted to obtain either oligomers or monomers. On the other hand, chemical modifications of rubbers by click-chemistry are important strategies for the creation and combination of new materials. In a way to expand the scope of uses to other non-traditional applications, several and effective modifications can be conducted with diene rubbers. Two groups of efficient tools, enzymatic, and chemical modifications in diene rubbers, are summarized in this review. By analyzing stereochemical and reactivity aspects, the authors also point to some applications perspectives for biodegradation products and to rational modifications of diene rubbers by combining both methodologies.
Collapse
Affiliation(s)
- Franciela Arenhart Soares
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| |
Collapse
|
5
|
Thermoreversible and Recycling Properties of Ethylene Propylene Diene Rubber Based on Diels-Alder Reaction. Macromol Res 2021. [DOI: 10.1007/s13233-021-9063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
He Z, Niu H, Liu L, Xie S, Hua Z, Li Y. Elastomeric polyolefin vitrimer: Dynamic imine bond cross-linked ethylene/propylene copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Borska K, Bednarek M, Pawlak A. Reprocessable polylactide-based networks containing urethane and disulfide linkages. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Jandaghian MH, Maddah Y, Nikzinat E, Masoori M, Sepahi A, Rashedi R. Investigation of the effects of heat treatment parameters during synthesis of titanium-magnesium-based Ziegler-Natta catalysts. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1845097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hossein Jandaghian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| | - Yasaman Maddah
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| | - Ehsan Nikzinat
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| | - Maryam Masoori
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| | - Abdolhannan Sepahi
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| | - Reza Rashedi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Iran
| |
Collapse
|
9
|
He Z, Niu H, Li Y. UV‐Light Responsive and Self‐Healable Ethylene/Propylene Copolymer Rubbers Based on Reversible [4 + 4] Cycloaddition of Anthracene Derivatives. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zongke He
- State Key Laboratory of Fine ChemicalsLiaoning Key Laboratory of Polymer Science and EngineeringDepartment of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Hui Niu
- State Key Laboratory of Fine ChemicalsLiaoning Key Laboratory of Polymer Science and EngineeringDepartment of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine ChemicalsLiaoning Key Laboratory of Polymer Science and EngineeringDepartment of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| |
Collapse
|
10
|
Coupling Dynamic Covalent Bonds and Ionic Crosslinking Network to Promote Shape Memory Properties of Ethylene-vinyl Acetate Copolymers. Polymers (Basel) 2020; 12:polym12040983. [PMID: 32340183 PMCID: PMC7240482 DOI: 10.3390/polym12040983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/05/2022] Open
Abstract
Dynamic crosslinking networks based on Diels–Alder (DA) chemistry and ionic interactions were introduced to maleic anhydride modified ethylene-vinyl acetate copolymer (mEVA) via in situ melt processing. The dual dynamic crosslinking networks were characterized by temperature-dependent FTIR, and the effects on the shape memory properties of mEVA were evaluated with dynamic mechanical thermal analysis and cyclic tensile testing. A crosslinking density was achieved at 2.36 × 10−4 mol·cm−3 for DA-crosslinked mEVA; as a result, the stress at 100% extension was increased from 3.8 to 5.6 MPa, and tensile strength and elongation at break were kept as high as 30.3 MPa and 486%, respectively. The further introduction of 10 wt % zinc methacrylate increased the dynamic crosslinking density to 3.74 × 10−4 mol·cm−3 and the stress at 100% extension to 9.0 MPa, while providing a tensile strength of 28.4 MPa and strain at break of 308%. The combination of reversible DA covalent crosslinking and ionic network in mEVA enabled a fixing ratio of 76.4% and recovery ratio of 99.4%, exhibiting an enhanced shape memory performance, especially at higher temperatures. The enhanced shape memory and mechanical performance of the dual crosslinked mEVA showed promising reprocessing and recycling abilities of the end-of-life products in comparison to traditional peroxide initiated covalent crosslinked counterparts.
Collapse
|
11
|
Yang S, Du X, Du Z, Zhou M, Cheng X, Wang H, Yan B. Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Farhat W, Biundo A, Stamm A, Malmström E, Syrén P. Lactone monomers obtained by enzyme catalysis and their use in reversible thermoresponsive networks. J Appl Polym Sci 2020. [DOI: 10.1002/app.48949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wissam Farhat
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Antonino Biundo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Arne Stamm
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
| | - Eva Malmström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
| | - Per‐Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
- Science for Life Laboratory, Division of Protein TechnologyKTH Royal Institute of Technology Tomtebodavägen 23, Box 1031, 171 21 Solna Stockholm Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Teknikringen 56‐58, 100 44 Stockholm Sweden
| |
Collapse
|
13
|
Liu S, Liu X, He Z, Liu L, Niu H. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels–Alder chemistry: the cross-linking reaction kinetics. Polym Chem 2020. [DOI: 10.1039/d0py01046d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The kinetics of the cross-linking reaction of ethylene/propylene rubbers based on Diels–Alder chemistry was detected by the rheological method.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiaoyan Liu
- Lanzhou Petrochemical Research Center
- Petrochemical Research Institute
- PetroChina
- Lanzhou 730000
- China
| | - Zongke He
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Liying Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hui Niu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
14
|
Luo KJ, Huang LB, Wang Y, Yu JR, Zhu J, Hu ZM. Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Xu J, Li Z, Wang B, Liu F, Liu Y, Liu F. Recyclable biobased materials based on Diels-Alder cycloaddition. J Appl Polym Sci 2019. [DOI: 10.1002/app.47352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianan Xu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Zhiying Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Bao Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Fengya Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Yudong Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Fengqi Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| |
Collapse
|
16
|
He Z, Niu H, Zheng N, Liu S, Li Y. Poly(ethylene-co-propylene)/poly(ethylene glycol) elastomeric hydrogels with thermoreversibly cross-linked networks. Polym Chem 2019. [DOI: 10.1039/c9py00824a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of elastomeric hydrogels with repeated processability were prepared in this work.
Collapse
Affiliation(s)
- Zongke He
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hui Niu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Nan Zheng
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Shuhui Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
17
|
Nagane SS, Kuhire SS, Mane SR, Wadgaonkar PP. Partially bio-based aromatic poly(ether sulfone)s bearing pendant furyl groups: synthesis, characterization and thermo-reversible cross-linking with a bismaleimide. Polym Chem 2019. [DOI: 10.1039/c8py01477a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fully bio-based bisphenol, namely, 4,4′-(furan-2-ylmethylene)bis(2-methoxyphenol) was synthesized and its utility for synthesis of aromatic poly(ether sulfone)s bearing clickable pendant furyl groups was demonstrated.
Collapse
Affiliation(s)
- Samadhan S. Nagane
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Sachin S. Kuhire
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Shivshankar R. Mane
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| |
Collapse
|
18
|
Yang LC, Han L, Ma HW, Liu PB, Shen HY, Li C, Zhang SB, Li Y. Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Peng YJ, He X, Wu Q, Sun PC, Wang CJ, Liu XZ. WITHDRAWN: An efficient way for the synthesis of epoxy resin polymers with thermoreversible cross-linking. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Deng M, Guo F, Liao D, Hou Z, Li Y. Aluminium-catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym Chem 2018. [DOI: 10.1039/c7py01516j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel family of well-designed thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks possessed excellent mechanical, self-healing ability and recyclability.
Collapse
Affiliation(s)
- Ming Deng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116012
| | - Fang Guo
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116012
| | - Daohong Liao
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116012
| | - Zhaomin Hou
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116012
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116012
| |
Collapse
|
21
|
Zhang D, Dumont MJ. Synthesis, characterization and potential applications of 5-hydroxymethylfurfural derivative based poly(β-thioether esters) synthesized via thiol-Michael addition polymerization. Polym Chem 2018. [DOI: 10.1039/c7py02052j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethylphenylphosphine was used to efficiently initiate the thiol-Michael addition polymerization to yield 5-hydroxymethylfurfural (HMF) derivative based poly(β-thioether esters) with relatively high molecular weights (over 10 000 g mol−1) under mild conditions.
Collapse
Affiliation(s)
- Daihui Zhang
- Department of Bioresource Engineering
- McGill University
- Sainte-Anne-de-Bellevue
- Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering
- McGill University
- Sainte-Anne-de-Bellevue
- Canada
| |
Collapse
|
22
|
Affiliation(s)
- Preetom Sarkar
- Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpur 721302 West Bengal India
| | - Anil K. Bhowmick
- Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpur 721302 West Bengal India
| |
Collapse
|