1
|
Bui AH, Rowlands NB, Fernando Pulle AD, Gibbs Medina SA, Rohrsheim TJ, Tuten BT. High-Shear Enhancement of Biginelli Reactions in Macromolecular Viscous Media. Macromol Rapid Commun 2024; 45:e2400490. [PMID: 39319676 PMCID: PMC11583297 DOI: 10.1002/marc.202400490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.
Collapse
Affiliation(s)
- Aaron Hung Bui
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Naomi Beth Rowlands
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Anne Dilpashani Fernando Pulle
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Sam Andrés Gibbs Medina
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Tullia Jade Rohrsheim
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Bryan Tyler Tuten
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Department of Chemistry and BiochemistryUniversity of Texas at Tyler3900 University BoulevardTylerTexas75799USA
| |
Collapse
|
2
|
Ma Z, Zhao S, Zhai H, Yuan R, Wei Y, Feng L, Tao L. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1 H)-thione. ACS Macro Lett 2023; 12:1491-1497. [PMID: 37874180 DOI: 10.1021/acsmacrolett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
4
|
Salinas-Hernández A, Delgado GE, Penieres-Carrillo JG, Delgado-Reyes JF, Gómez-Pliego R, Luna-Mora R, Ríos-Guerra H. Synthesis, crystal structure and Hirshfeld surface analysis of the 1-(3,6-dihydropyrimidin-2-yl)urea salt structurally related to dihydropyrimidinon-2-ylurea-type RNA-binding ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Liu H, Kanjilal P, Thayumanavan S. Self‐assembly of polymers from multicomponent reactions. POLYM INT 2022. [DOI: 10.1002/pi.6352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongxu Liu
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - Pintu Kanjilal
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - S Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
6
|
Windbiel JT, Meier MAR. RAFT Polymerization of a Renewable Ricinoleic Acid‐Derived Monomer and Subsequent Post‐Polymerization Modification via the Biginelli‐3‐Component Reaction. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian T. Windbiel
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Biological and Chemical Systems Functional Molecular Systems (IBCS‐FMS) Eggenstein‐Leopoldshafen 76344 Germany
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Biological and Chemical Systems Functional Molecular Systems (IBCS‐FMS) Eggenstein‐Leopoldshafen 76344 Germany
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Organic Chemistry (IOC) Straße am Forum 7 Karlsruhe 76131 Germany
| |
Collapse
|
7
|
Robust Fabrication of Fluorescent Cellulosic Materials via Hantzsch Reaction. Macromol Rapid Commun 2020; 42:e2000496. [DOI: 10.1002/marc.202000496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
|
8
|
Liu G, Pan R, Wei Y, Tao L. The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromol Rapid Commun 2020; 42:e2000459. [PMID: 33006198 DOI: 10.1002/marc.202000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruihao Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Windbiel JT, Meier MAR. Synthesis of new Biginelli polycondensates: renewable materials with tunable high glass transition temperatures. POLYM INT 2020. [DOI: 10.1002/pi.6106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Julian T Windbiel
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Eggenstein‐Leopoldshafen Germany
| | - Michael AR Meier
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Eggenstein‐Leopoldshafen Germany
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
10
|
Yuan L, He L, Wang Y, Lang X, Yang F, Zhao Y, Zhao H. Two- and Three-Component Post-Polymerization Modifications Based on Meldrum’s Acid. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong He
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstraße 45, Hamburg 20146, Germany
| | - Yixi Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xianhua Lang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Zhao
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Zhu N, Chiou MF, Xiong H, Su M, Su M, Li Y, Wan WM, Bao H. The Introduction of the Radical Cascade Reaction into Polymer Chemistry: A One-Step Strategy for Synchronized Polymerization and Modification. iScience 2020; 23:100902. [PMID: 32106054 PMCID: PMC7044516 DOI: 10.1016/j.isci.2020.100902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Polymerization and modification play central roles in polymer chemistry and are generally implemented in two steps, which suffer from the time-consuming two-step strategy and present considerable challenge for complete modification. By introducing the radical cascade reaction (RCR) into polymer chemistry, a one-step strategy is demonstrated to achieve synchronized polymerization and complete modification in situ. Attributed to the cascade feature of iron-catalyzed three-component alkene carboazidation RCR exhibiting carbon-carbon bond formation and carbon-azide bond formation with extremely high efficiency and selectivity in one step, radical cascade polymerization therefore enables the in situ synchronized polymerization through continuous carbon-carbon bond formation and complete modification through carbon-azide bond formation simultaneously. This results in a series of α, β, and γ poly(amino acid) precursors. This result not only expands the methodology library of polymerization, but also the possibility for polymer science to achieve functional polymers with tailored chemical functionality from in situ polymerization.
Collapse
Affiliation(s)
- Nengbo Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Muqiao Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| |
Collapse
|
12
|
Shen H, Han L, Ma H, Liu P, Yang L, Li C, Ma Y, Peng Z, Li Y. Synthesis of polymeric topological isomers based on sequential Ugi-4CR and thiol–yne click reactions with sequence-controlled amino-functionalized polymers. Polym Chem 2020. [DOI: 10.1039/c9py01859j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric topological isomers have been designed and synthesized with sequence-controlled amino functionalized polymers.
Collapse
Affiliation(s)
- Heyu Shen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yuting Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Zhixuan Peng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
13
|
Zhang Z, You Y, Hong C. Multicomponent Reactions and Multicomponent Cascade Reactions for the Synthesis of Sequence-Controlled Polymers. Macromol Rapid Commun 2018; 39:e1800362. [DOI: 10.1002/marc.201800362] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Chunyan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|