1
|
Chen L, Wang Z, Fang E, Fan Z, Song S. Cationic polymerization of vinyl ethers using trifluoromethyl sulfonate/solvent/ligand to access well-controlled poly(vinyl ether)s. Chem Sci 2025; 16:1250-1264. [PMID: 39677930 PMCID: PMC11638848 DOI: 10.1039/d4sc06181k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 12/17/2024] Open
Abstract
Cationic polymerization of vinyl ethers to access poly(vinyl ether) polymeric materials has been challenging due to stringent polymerization conditions and inevitable chain transfer. Herein we introduce a protocol using trifluoromethyl sulfonates to catalyze the polymerization of a series of vinyl ethers. These trifluoromethyl sulfonates are fully commercially available and can be stored under ambient conditions. Solvents and ligands have profound influences on the polymerization process, and poly(vinyl ether)s with different molecular weights, molecular weight distributions, and tacticities were obtained. A few combinations of trifluoromethyl sulfonate/solvents/O^O type ligands were explored. They showed high activities and afforded poly(vinyl ether)s with well-controlled tacticity, of which the isotacticity can be up to 81% m. Poly(vinyl ether)s with high tacticities exhibit crystallization behaviors with melting points. We also probed the cationic reversible addition-fragmentation chain transfer (RAFT) polymerization of ethyl vinyl ether employing a RAFT chain transfer agent. Low molecular weight distributions (Đs) around 1.1 can be realized. Since trifluoromethyl sulfonates can be fed at a remarkably low catalyst loading and other chemicals are cheap and easily available, the poly(vinyl ether) polymeric materials are promisingly prepared on a large scale.
Collapse
Affiliation(s)
- Liangyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhihao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - En Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
2
|
Aydogan C, Aykac FS, Yilmaz G, Chew YQ, Goto A, Yagci Y. Synthesis of Block Copolymers by Mechanistic Transformation from Reversible Complexation Mediated Living Radical Polymerization to the Photoinduced Radical Oxidation/Addition/Deactivation Process. ACS Macro Lett 2022; 11:342-346. [PMID: 35575368 PMCID: PMC8928464 DOI: 10.1021/acsmacrolett.2c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile strategy for the fabrication of block copolymers by the combination of two discrete living polymerization techniques─reversible complexation mediated living radical polymerization (RCMP) and photoinduced radical oxidation addition deactivation (PROAD) processes─is reported. First, RCMP is conducted to yield poly(methyl methacrylate) with iodide end groups (PMMA-I). In the following step, PMMA-I is used as macroinitiator for living PROAD cationic polymerization of isobutyl vinyl ether. Successful formation of the block copolymers is confirmed by 1H NMR, FT-IR, GPC, and DSC investigations.
Collapse
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - F Simal Aykac
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ye Qiu Chew
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
3
|
|
4
|
Hayes G, Drain B, Becer CR. Multiarm Core Cross-Linked Star-Shaped Poly(2-oxazoline)s Using a Bisfunctional 2-Oxazoline Monomer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham Hayes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
5
|
Nikolaev A, Lu Z, Chakraborty A, Sepunaru L, de Alaniz JR. Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst. J Am Chem Soc 2021; 143:12278-12285. [PMID: 34314165 DOI: 10.1021/jacs.1c05431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The necessity of well-tuned reactivity for successful controlled polymer synthesis often comes with the price of limited monomer substrate scope. We demonstrate here the on-demand interconversion between living radical and cationic polymerization using two orthogonal stimuli and a dual responsive single catalyst. The dual photo- and electrochemical reactivity of 10-phenylphenothiazine catalyst provides control of the polymer's molar mass and composition by orthogonally activating the common dormant species toward two distinct chemical routes. This enables the synthesis of copolymer chains that consist of radically and cationically polymerized segments where the length of each block is controlled by the duration of the stimulus exposure. By alternating the application of photochemical and electrochemical stimuli, the on-demand incorporation of acrylates and vinyl ethers is achieved without compromising the end-group fidelity or dispersity of the formed polymer. The results provide a proof-of-concept for the ability to substantially extend substrate scope for block copolymer synthesis under mild, metal-free conditions through the use of a single, dual reactive catalyst.
Collapse
Affiliation(s)
- Andrei Nikolaev
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Zhipeng Lu
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Arunavo Chakraborty
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Zhang M, Li J, Chen M, Pan X, Zhang Z, Zhu J. Combination of the Photoinduced Atom Transfer Radical Addition Reaction and Living Cationic Polymerization: A Latent Initiator Strategy toward Tailoring Polymer Molecular Weight Distributions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengmeng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Uchiyama M, Osumi M, Satoh K, Kamigaito M. Hybridization of Step-/Chain-Growth and Radical/Cationic Polymerizations Using Thioacetals as Key Components for Triblock, Periodic and Random Multiblock Copolymers with Thermoresponsiveness. Macromol Rapid Commun 2021; 42:e2100192. [PMID: 33945193 DOI: 10.1002/marc.202100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Indexed: 11/11/2022]
Abstract
A novel strategy for synthesizing a series of multiblock copolymers is developed by combining radical/cationic step-growth polymerizations of dithiols and divinyl ethers and chain-growth cationic degenerative chain-transfer (DT) polymerizations of vinyl ethers using thioacetals as key components. The combination of radical step-growth polymerization and a cationic thiol-ene reaction or cationic step-growth polymerization enables the synthesis of a series of macro chain-transfer agents (CTAs) composed of poly(thioether) and thioacetal groups at different positions. The resulting products are 1) bifunctional macro CTAs with thioacetal groups at both chain ends, 2) periodic macro CTAs periodically having thioacetal groups in the main chain, and 3) random macro CTAs randomly having thioacetal groups in the main chain. Subsequently, the obtained macro CTAs are used for chain-growth cationic DT polymerization of methoxyethyl vinyl ether (MOVE) to result in 1) triblock, 2) periodic, and 3) random multiblock copolymers consisting of poly(thioether) and poly(MOVE) segments. All these triblock and multiblock copolymers composed of hydrophobic poly(thioether) and hydrophilic poly(MOVE) segments show an amphiphilic tendency to form characteristic micelles in aqueous solutions. In addition, due to the thermoresponsive poly(MOVE) segments, the obtained copolymers exhibit lower critical solution temperatures that depend on the segment sequences and lengths.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masahiro Osumi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
9
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
10
|
Boeck PT, Tanaka J, Liu S, You W. Importance of Nucleophilicity of Chain-Transfer Agents for Controlled Cationic Degenerative Chain-Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Parker Thomas Boeck
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Tanaka J, Häkkinen S, Boeck PT, Cong Y, Perrier S, Sheiko SS, You W. Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angew Chem Int Ed Engl 2020; 59:7203-7208. [DOI: 10.1002/anie.202000700] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Joji Tanaka
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Satu Häkkinen
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Parker T. Boeck
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Yidan Cong
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sergei S. Sheiko
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Wei You
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
12
|
Tanaka J, Häkkinen S, Boeck PT, Cong Y, Perrier S, Sheiko SS, You W. Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Joji Tanaka
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Satu Häkkinen
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Parker T. Boeck
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Yidan Cong
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sergei S. Sheiko
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Wei You
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
13
|
Li J, Kerr A, Häkkinen S, Floyd T, Zhang M, Pan X, Zhu X, Perrier S, Zhu J. Manganese carbonyl induced cationic reversible addition–fragmentation chain transfer (C-RAFT) polymerization under visible light. Polym Chem 2020. [DOI: 10.1039/c9py01785b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vinyl ethers were polymerized by C-RAFT polymerization on the basis of halide abstraction reaction of manganese carbonyl and organic halide.
Collapse
Affiliation(s)
- Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Andrew Kerr
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Satu Häkkinen
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Thomas Floyd
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Mengmeng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Sébastien Perrier
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
- Warwick Medical School
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
14
|
Tuten BT, Wiedbrauk S, Barner-Kowollik C. Contemporary catalyst-free photochemistry in synthetic macromolecular science. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
McGuire TM, Miyajima M, Uchiyama M, Buchard A, Kamigaito M. Epoxy-functionalised 4-vinylguaiacol for the synthesis of bio-based, degradable star polymers via a RAFT/ROCOP strategy. Polym Chem 2020. [DOI: 10.1039/d0py00878h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An epoxy derivative of a naturally occuring vinylphenolic compound, 4-vinylguaiacol, was polymerised using a RAFT/ROCOP strategy and produced ester cross-linked star polymers which could be selectively degraded under acid conditions.
Collapse
Affiliation(s)
- Thomas M. McGuire
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Claverton Down BA2 7AY
- UK
| | - Masato Miyajima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Antoine Buchard
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Claverton Down BA2 7AY
- UK
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
16
|
Yilmaz G, Yagci Y. Mechanistic Transformations Involving Radical and Cationic Polymerizations. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2367-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Konya M, Uchiyama M, Satoh K, Kamigaito M. Cationic Polymerization via Activation of Alkoxyamines Using Photoredox Catalysts. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masato Konya
- Department of Molecular and Macromolecular Chemistry Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Current Address: Department of Chemical Science and Engineering School of Materials and Chemical TechnologyTokyo Institute of Technology 2-12-1-H120 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
18
|
A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2233-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Vrijsen JH, Osiro Medeiros C, Gruber J, Junkers T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A convenient method to synthesize core cross-linked star polymers via a continuous flow photopolymerization process is developed.
Collapse
Affiliation(s)
- Jeroen H. Vrijsen
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Camila Osiro Medeiros
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Departamento de Engenharia Química
| | - Jonas Gruber
- Departamento de Química Fundamental
- Instituto de Químca da Universidade de São Paulo
- CEP 05508-000 São Paulo
- Brazil
| | - Tanja Junkers
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Polymer Reaction Design Group
| |
Collapse
|
20
|
Kamigaito M, Satoh K, Uchiyama M. Degenerative chain‐transfer process: Controlling all chain‐growth polymerizations and enabling novel monomer sequences. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
21
|
Hong M, Chen J, Chen EYX. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 2018; 118:10551-10616. [PMID: 30350583 DOI: 10.1021/acs.chemrev.8b00352] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new or more sustainable, active, efficient, controlled, and selective polymerization reactions or processes continues to be crucial for the synthesis of important polymers or materials with specific structures or functions. In this context, the newly emerged polymerization technique enabled by main-group Lewis pairs (LPs), termed as Lewis pair polymerization (LPP), exploits the synergy and cooperativity between the Lewis acid (LA) and Lewis base (LB) sites of LPs, which can be employed as frustrated Lewis pairs (FLPs), interacting LPs (ILPs), or classical Lewis adducts (CLAs), to effect cooperative monomer activation as well as chain initiation, propagation, termination, and transfer events. Through balancing the Lewis acidity, Lewis basicity, and steric effects of LPs, LPP has shown several unique advantages or intriguing opportunities compared to other polymerization techniques and demonstrated its broad polar monomer scope, high activity, control or livingness, and complete chemo- or regioselectivity, as well as its unique application in materials chemistry. These advances made in LPP are comprehensively reviewed, with the scope of monomers focusing on heteroatom-containing polar monomers, while the polymerizations mediated by main-group LAs and LBs separately that are most relevant to the LPP are also highlighted or updated. Examples of applying the principles of the LPP and LP chemistry as a new platform for advancing materials chemistry are highlighted, and currently unmet challenges in the field of the LPP, and thus the suggested corresponding future research directions, are also presented.
Collapse
Affiliation(s)
- Miao Hong
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiawei Chen
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| | - Eugene Y-X Chen
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
22
|
Yan X, Li J, Ren T. Synthesis of well-defined star, star-block, and miktoarm star biodegradable polymers based on PLLA and PCL by one-pot azide-alkyne click reaction. RSC Adv 2018; 8:29464-29475. [PMID: 35547998 PMCID: PMC9084564 DOI: 10.1039/c8ra06262e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Based on the "arm-first" strategy, ring-opening polymerization (ROP) and one-pot azide-alkyne click reaction, well-defined star-shaped polymers with different architectures have been successfully synthesized, including the star homopolymers four-arm star-shaped polycaprolactone (4sPCL) and four-arm star-shaped poly(l-lactic acid) (4sPLLA), star-block copolymer 4sPCL-b-PLLA and miktoarm star-shaped copolymer PCL2PLLA2. The star homopolymers 4sPCL and 4sPLLA were synthesized by a click reaction of an azide small molecule initiator and HC[triple bond, length as m-dash]C-PCL or HC[triple bond, length as m-dash]C-PLLA. The star-block copolymer 4sPCL-b-PLLA was synthesized by a click reaction of an azide small molecule initiator and the block copolymer HC[triple bond, length as m-dash]C-PCL-b-PLLA. The miktoarm star polymer PCL2PLLA2 was synthesized by a one-pot azide-alkyne click reaction of simultaneous addition of equal proportions of HC[triple bond, length as m-dash]C-PCL and HC[triple bond, length as m-dash]C-PLLA. The structures of these star-shaped polymers have been confirmed by NMR, FT-IR and GPC. Furthermore, the melting and crystallization behaviors investigated using DSC and WXRD also confirm the formation of star-shaped polymers with different architectures.
Collapse
Affiliation(s)
- Xiaoqi Yan
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Tianbin Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| |
Collapse
|
23
|
Guerre M, Uchiyama M, Lopez G, Améduri B, Satoh K, Kamigaito M, Ladmiral V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01924f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Block copolymers containing chlorotrifluoroethylene (CTFE) are relatively rare.
Collapse
Affiliation(s)
- Marc Guerre
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Gérald Lopez
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Bruno Améduri
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Vincent Ladmiral
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| |
Collapse
|