1
|
Kalelkar PP, Geng Z, Cox B, Finn MG, Collard DM. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Colloids Surf B Biointerfaces 2021; 211:112242. [PMID: 34929482 DOI: 10.1016/j.colsurfb.2021.112242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022]
Abstract
We have modified the surface of poly(lactic acid) (PLA) by bromination in the presence of N-bromosuccinimide (NBS) under UV irradiation. This new approach to impart functionality to the surface does not effect the bulk of the material. Brominated PLA surfaces served as initiators for atom-transfer radical polymerization (SI-ATRP) of 2-(methacryloyloxy)ethyl]trimethylammonium chloride, a quaternary ammonium methacrylate (QMA). Grafting of poly(QMA) brushes rendered PLA films hydrophilic and these films displayed a three-order of magnitude increase in antimicrobial efficacy against Gram-negative bacteria such as Escherichia coli as compared to unmodified PLA. The two-step strategy described here to modify PLA surface represents a useful route to modified PLA materials for biomedical and antimicrobial packaging applications.
Collapse
Affiliation(s)
- Pranav P Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Zhishuai Geng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Bronson Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - David M Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
2
|
Zhao G, Ge T, Yan Y, Shuai Q, Su WK. Highly Efficient Modular Construction of Functional Drug Delivery Platform Based on Amphiphilic Biodegradable Polymers via Click Chemistry. Int J Mol Sci 2021; 22:10407. [PMID: 34638747 PMCID: PMC8508947 DOI: 10.3390/ijms221910407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022] Open
Abstract
Amphiphilic copolymers with pendant functional groups in polyester segments are widely used in nanomedicine. These enriched functionalities are designed to form covalent conjugates with payloads or provide additional stabilization effects for encapsulated drugs. A general method is successfully developed for the efficient preparation of functional biodegradable PEG-polyester copolymers via click chemistry. Firstly, in the presence of mPEG as initiator, Sn(Oct)2-catalyzed ring-opening polymerization of the α-alkynyl functionalized lactone with D,L-lactide or ε-caprolactone afforded linear mPEG-polyesters bearing multiple pendant alkynyl groups. Kinetic studies indicated the formation of random copolymers. Through copper-catalyzed azide-alkyne cycloaddition reaction, various small azido molecules with different functionalities to polyester segments are efficiently grafted. The molecular weights, polydispersities and grafting efficiencies of azido molecules of these copolymers were investigated by NMR and GPC. Secondly, it is demonstrated that the resulting amphiphilic functional copolymers with low CMC values could self-assemble to form nanoparticles in aqueous media. In addition, the in vitro degradation study and cytotoxicity assays indicated the excellent biodegradability and low cytotoxicity of these copolymers. This work provides a general approach toward the preparation of functional PEG-polyester copolymers in a quite efficient way, which may further facilitate the application of functional PEG-polyesters as drug delivery materials.
Collapse
Affiliation(s)
- Guangkuo Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (G.Z.); (T.G.)
| | - Tongtong Ge
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (G.Z.); (T.G.)
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China;
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (G.Z.); (T.G.)
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (G.Z.); (T.G.)
| |
Collapse
|
3
|
Smith PP, Boyes SG. Synthesis of amphiphilic block copolymers via ring opening polymerization and reversible
addition‐fragmentation
chain transfer polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrizia P. Smith
- Department of Chemistry Colorado School of Mines Golden Colorado USA
| | - Stephen G. Boyes
- Department of Chemistry The George Washington University Washington District of Columbia USA
| |
Collapse
|
4
|
Gazzotti S, Ortenzi MA, Farina H, Silvani A. 1,3-Dioxolan-4-Ones as Promising Monomers for Aliphatic Polyesters: Metal-Free, in Bulk Preparation of PLA. Polymers (Basel) 2020; 12:E2396. [PMID: 33080938 PMCID: PMC7603121 DOI: 10.3390/polym12102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The first example of solvent-free, organocatalyzed, polymerization of 1,3-dioxolan-4-ones, used as easily accessible monomers for the synthesis of polylactic acid (PLA), is described here. An optimization of reaction conditions was carried out, with p-toluensulfonic acid emerging as the most efficient Brønsted acid catalyst. The reactivity of the monomers in the tested conditions was studied following the monomer conversion by 1H NMR and the molecular weight growth by SEC analysis. A double activation polymerization mechanism was proposed, pointing out the key role of the acid catalyst. The formation of acetal bridges was demonstrated, to different extents depending on the nature of the aldehyde or ketone employed for lactic acid protection. The polymer shows complete retention of stereochemistry, as well as good thermal properties and good polydispersity, albeit modest molecular weight.
Collapse
Affiliation(s)
- Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Hermes Farina
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Alessandra Silvani
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
5
|
Gazzotti S, Ortenzi MA, Farina H, Disimino M, Silvani A. Carvacrol- and Cardanol-Containing 1,3-Dioxolan-4-ones as Comonomers for the Synthesis of Functional Polylactide-Based Materials. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Gazzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Hermes Farina
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariapina Disimino
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
6
|
Kalelkar PP, Collard DM. Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
7
|
Brzeski J, Czapla M, Skurski P. The mechanism of tert-butylthiol formation via hydrosulfurization of isobutene catalyzed by superacids (HBF4, HAsF6, and HSbF6). Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kalelkar PP, Geng Z, Finn MG, Collard DM. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules 2019; 20:3366-3374. [DOI: 10.1021/acs.biomac.9b00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Fuoco T, Finne-Wistrand A. Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1625059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Fuoco
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|