1
|
Si C, Wang T, Xu Y, Lin D, Sun D, Zysman-Colman E. A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system. Nat Commun 2024; 15:7439. [PMID: 39198389 PMCID: PMC11358277 DOI: 10.1038/s41467-024-51231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF. The demonstration reveals that 2GCzBPPZ can serve as a temperature sensor with excellent temperature sensitivity and remarkably wide emission color response in solution. By embedding 2GCzBPPZ in paraffin we demonstrate a spatial-temperature sensor that shows a noticeable emission shift from yellow to green and ultimately to blue as the temperature increases from 20 to 200 °C. We finally demonstrate the utility of these TADF dendrimers in solution-processed organic light-emitting diodes.
Collapse
Affiliation(s)
- Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Dongqing Lin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
2
|
Russegger A, Fischer SM, Debruyne AC, Wiltsche H, Boese AD, Dmitriev RI, Borisov SM. Tunable Self-Referenced Molecular Thermometers via Manipulation of Dual Emission in Platinum(II) Pyridinedipyrrolide Complexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11930-11943. [PMID: 38390631 PMCID: PMC10921383 DOI: 10.1021/acsami.3c19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Optical temperature sensors based on self-referenced readout schemes such as the emission ratio and the decay time are crucial for a wide range of applications, with the former often preferred due to simplicity of instrumentation. This work describes a new group of dually emitting dyes, platinum(II) pincer complexes, that can be used directly for ratiometric temperature sensing without an additional reference material. They consist of Pt(II) metal center surrounded by a pyridinedipyrrolide ligand (PDP) and a terminal ligand (benzonitrile, pyridine, 1-butylimidazol or carbon monoxide). Upon excitation with blue light, these complexes exhibit green to orange emission, with quantum yields in anoxic toluene at 25 °C ranging from 13% to 86% and decay times spanning from 8.5 to 97 μs. The emission is attributed to simultaneous thermally activated delayed fluorescence (TADF) and phosphorescence processes on the basis of photophysical investigations and DFT calculations. Rather uniquely, simple manipulations in substituents of the PDP ligand and alteration of the terminal ligand allow fine-tuning of the ratio between TADF and phosphorescence from almost 100% TADF emission (Pt(MesPDPC6F5(BN)) to over 80% of phosphorescence (Pt(PhPDPPh(BuIm)). Apart from ratiometric capabilities, the complexes also are useful as decay time-based temperature indicators with temperature coefficients exceeding 1.5% K-1 in most cases. Immobilization of the dyes into oxygen-impermeable polyacrylonitrile produces temperature sensing materials that can be read out with an ordinary RGB camera or a smartphone. In addition, Pt(PhPDPPh)Py can be incorporated into biocompatible RL100 nanoparticles suitable for cellular nanothermometry, as we demonstrate with temperature measurements in multicellular colon cancer spheroids.
Collapse
Affiliation(s)
- Andreas Russegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Susanne M. Fischer
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Angela C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - A. Daniel Boese
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
- Ghent
Light Microscopy Core, Ghent University, Ghent 9000, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| |
Collapse
|
3
|
Chen X, Yang T, Lei J, Liu X, Zhao Z, Xue Z, Li W, Zhang Y, Yuan WZ. Clustering-Triggered Emission and Luminescence Regulation by Molecular Arrangement of Nonaromatic Polyamide-6. J Phys Chem B 2020; 124:8928-8936. [DOI: 10.1021/acs.jpcb.0c06606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University, Beijing 102206, China
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlong Lei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University, Beijing 102206, China
| | - Wenhan Li
- Yangzhong Intelligent Electrical Institute, North China Electric Power University, Beijing 102206, China
| | - Yongming Zhang
- Institute of Advanced Materials, North China Electric Power University, Beijing 102206, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Hu X, Li M, Xian Y, Liu X, Liu M, Li G, Hu P, Cheng C. Waterborne polyurethane‐based dye with covalently bonded to Disperse blue 60. J Appl Polym Sci 2019. [DOI: 10.1002/app.48862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xianhai Hu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Mingjun Li
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Yuxi Xian
- CAS Key Laboratory for Mechanical Behavior and Design of MaterialsUniversity of Science and Technology of China Hefei 230026 People's Republic of China
| | - Xiang Liu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Manli Liu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Gen Li
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Pengwei Hu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| | - Congliang Cheng
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical EngineeringAnhui Jianzhu University Hefei 230601 People's Republic of China
| |
Collapse
|
5
|
Zhou Y, Qin W, Du C, Gao H, Zhu F, Liang G. Long‐Lived Room‐Temperature Phosphorescence for Visual and Quantitative Detection of Oxygen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yusheng Zhou
- PCFM LabSchool of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Wei Qin
- PCFM LabSchool of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Cheng Du
- PCFM LabSchool of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Haiyang Gao
- PCFM LabSchool of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Fangming Zhu
- PCFM LabSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Guodong Liang
- PCFM LabSchool of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
6
|
Zhou Y, Qin W, Du C, Gao H, Zhu F, Liang G. Long-Lived Room-Temperature Phosphorescence for Visual and Quantitative Detection of Oxygen. Angew Chem Int Ed Engl 2019; 58:12102-12106. [PMID: 31233271 DOI: 10.1002/anie.201906312] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/19/2019] [Indexed: 12/18/2022]
Abstract
An unconventional organic molecule (TBBU) showing obvious long-lived room temperature phosphorescence (RTP) is reported. X-ray single crystal analysis demonstrates that TBBU molecules are packed in a unique fashion with side-by-side arranged intermolecular aromatic rings, which is entirely different from the RTP molecules reported to date. Theoretical calculations verify that the extraordinary intermolecular interaction between neighboring molecules plays an important role in RTP of TBBU crystals. More importantly, the polymer film doped with TBBU inherits its distinctive RTP property, which is highly sensitive to oxygen. The color of the doped film changes and its RTP lifetime drops abruptly through a dynamic collisional quenching mechanism with increasing oxygen fraction, enabling visual and quantitative detection of oxygen. Through analyzing the grayscale of the phosphorescence images, a facile method is developed for rapid, visual, and quantitative detection of oxygen in the air.
Collapse
Affiliation(s)
- Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Qin
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cheng Du
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiyang Gao
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangming Zhu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Li Z, Wang T, Xu D, Zuo J, Li X, Li Z, Xu F, Zhang X. Modulation of Thermally Activated Delayed Fluorescence in Waterborne Polyurethanes via Charge-Transfer Effect. Chem Asian J 2019; 14:2302-2308. [PMID: 31077557 DOI: 10.1002/asia.201900423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/08/2019] [Indexed: 11/05/2022]
Abstract
Here, we designed several waterborne polyurethanes (WPUs) with efficient thermally activated delayed fluorescence (TADF) via serving charge-transfer (CT) states as a mediate bridge between singlet and triplet states to boost reverse intersystem crossing (RISC). By tuning substituents of diphenyl sulfone (DS), we found that O,O'- and S,S'-substituted DS covalently incorporated in WPUs solely show typical fluorescence emission with lifetimes in the nanosecond range. Interestingly, TADF appears by replacing the substituent with the nitrogen atom, of which lifetimes are up to ≈10 microseconds and ≈1 millisecond in air and vacuum, respectively, even though the energy gap between singlet and triplet states (ΔEST ) is still large for generating TADF. To explain this phenomenon, an energy level mode based on CT states and an 3 (n-π*) receiver state was proposed. By the rational modulation of CT states, it is possible to tune the ΔEST to render TADF-based materials suitable for versatile applications.
Collapse
Affiliation(s)
- Zongren Li
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tao Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dong Xu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zuo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinyu Li
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwei Li
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fei Xu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xingyuan Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2218-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Chang CW, Chang JP, Lu KT. Synthesis of Linseed Oil-Based Waterborne Urethane Oil Wood Coatings. Polymers (Basel) 2018; 10:E1235. [PMID: 30961160 PMCID: PMC6401805 DOI: 10.3390/polym10111235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
The linseed oil glyceride (LOG) was synthesized by using a transesterification process with a glycerol/linseed oil molar ratio of 1.0. The waterborne urethane oil (WUO) wood coating was prepared by acetone process. First, dimethylolpropionic acid was reacted with hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI), followed by adding LOG at various NCO/OH molars of 0.7, 0.8, and 0.9, respectively, and the COOH-containing prepolymer was obtained. Then, the ionomer which was prepared by neutralizing prepolymer with trimethylamine, was dispersed by adding deionized water, and the water⁻acetone dispersion was obtained. Finally, the acetone was removed by vacuum distillation. In the whole synthesized process, the LOG and COOH-containing prepolymer could be steadily synthesized by FTIR analysis, and the weight-average molecular weight and polydispersity of COOH-containing prepolymer increased with an increase of NCO/OH molar ratios. During the water dispersion process of the ionomer acetone solution, the point of phase inversion was prolonged, meaning the solid content decreased with an increase of NCO/OH molar ratios. After acetone was removed, the color of WUO was milky-white, and it was weakly alkaline and possessed a pseudoplastic fluid behavior. The particle size of WUO increased with increasing of NCO/OH molar ratios, however, the storage stability was extended for HDI and shortened for IPDI synthesized with increasing of NCO/OH molar ratios.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Forestry, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 402, Taiwan.
| | - Jing-Ping Chang
- Department of Forestry, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 402, Taiwan.
| | - Kun-Tsung Lu
- Department of Forestry, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 402, Taiwan.
| |
Collapse
|
10
|
Yang J, Kersi DK, Richers CP, Giles LJ, Dangi R, Stein BW, Feng C, Tichnell CR, Shultz DA, Kirk ML. Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes. Inorg Chem 2018; 57:13470-13476. [DOI: 10.1021/acs.inorgchem.8b02087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Christopher R. Tichnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David A. Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | | |
Collapse
|