1
|
Wu L, Zhu Z, Xue J, Zheng L, Liu H, Ouyang H, Fu Z, He Y. Chemiluminescent/photothermal dual-mode lateral flow immunoassay based on CoFe PBAs/WS 2 nanozyme for rapid and highly sensitive point-of-care testing of gentamicin. Biosens Bioelectron 2024; 265:116711. [PMID: 39186893 DOI: 10.1016/j.bios.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Serious adverse drug reactions of gentamicin (GM) significantly limit its clinical use, thus there is an urgent demand to develop reliable strategies to detect its concentration. In this study, we have developed a novel highly sensitive and portable lateral flow immunoassay (LFIA) based on CoFe PBAs/WS2 nanozyme mediated chemiluminescence (CL) and photothermal (PT) dual-mode POCT biosensor for the detection of GM, which successfully combines sensitive laboratory analyses with portable in situ analyses in the field. In this proof-of-principle work, the dynamic detection ranges of CL-LFIA and PT-LFIA mode were 1 pg mL-1 to 100 ng mL-1 and 50 pg mL-1 to 100 ng mL-1 with the limits of detection of 0.33 and 16.67 pg mL-1, respectively. The whole detection of CL-LFIA and PT-LFIA could be completed within 15 min and 30 min, respectively. The recoveries of GM spiked into complex matrices including milk, urine, and serum for CL-LFIA and PT-LFIA were 90.94%-109.74% and 94.49%-109.31%, respectively, indicating the reliability and applicability of the dual-mode LFIA in real samples. The dual-mode POCT biosensor could effectively overcome the false problems with improving accuracy and sensitivity, enabling user to precisely detect GM by laboratory analysis or on-site analysis depending on the source condition. Due to the complementary properties of CL-LFIA and PT-LFIA, the developed POCT biosensor can effectively ensure high-performance detection, showing the potential application of accurately detecting drug concentration in clinical practice.
Collapse
Affiliation(s)
- Lulu Wu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Zhongjie Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Jinxia Xue
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Liang Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hongmei Liu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X. Overview of the Design and Application of Photothermal Immunoassays. SENSORS (BASEL, SWITZERLAND) 2024; 24:6458. [PMID: 39409498 PMCID: PMC11479306 DOI: 10.3390/s24196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Developing powerful immunoassays for sensitive and real-time detection of targets has always been a challenging task. Due to their advantages of direct readout, controllable sensing, and low background interference, photothermal immunoassays have become a type of new technology that can be used for various applications such as disease diagnosis, environmental monitoring, and food safety. By modification with antibodies, photothermal materials can induce temperature changes by converting light energy into heat, thereby reporting specific target recognition events. This article reviews the design and application of photothermal immunoassays based on different photothermal materials, including noble metal nanomaterials, carbon-based nanomaterials, two-dimensional nanomaterials, metal oxide and sulfide nanomaterials, Prussian blue nanoparticles, small organic molecules, polymers, etc. It pays special attention to the role of photothermal materials and the working principle of various immunoassays. Additionally, the challenges and prospects for future development of photothermal immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yike Wu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Cui Gan
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yupeng Hou
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Dehua Deng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Cai Z, Zhang Y, He X, Chen J, Hua XN, Shi PP, Sun B. Enhancing Short-Range Interactions to Broaden the Temperature Range for Coexistence of Antiferroelectricity and Ferroelasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403390. [PMID: 39105400 DOI: 10.1002/smll.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Antiferroelectric (AFE) materials, characterized by double electric hysteresis loops, can be transformed to the ferroelectric (FE) phase under an external electric field, making them promising candidates for electronic energy storage and solid-state refrigeration. Additionally, the field-induced strain in AFE materials is contingent upon the direction of the electric field, rendering it with a switching characteristic. Although AFE materials have made progress in the field of energy storage and negative electrocaloric effect, the coexistence of AFE and ferroelasticity is still rarely reported. Here, two isomorphic organic-inorganic hybrid perovskites, HDAEPbCl4 and HDAEPbBr4 (HDAE is [2-(hydroxydimethylammonio)ethan-1-aminium]), exhibiting FE-AFE-PE (PE is paraelectric) phase transitions, are presented. Remarkably, the temperature range where AFE and ferroelasticity coexist is significantly broadened from 59.9 K to 115.1 K by strengthening short-range forces via halogen substitution. This discovery extends the family of FE, AFE, and ferroelastic materials, contributing to the development of multifunctional materials and advancing multifunctional material development.
Collapse
Affiliation(s)
- Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, P. R. China
| | - Ping-Ping Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Wen C, Dou Y, Liu Y, Jiang X, Tu X, Zhang R. Au Nanoshell-Based Lateral Flow Immunoassay for Colorimetric and Photothermal Dual-Mode Detection of Interleukin-6. Molecules 2024; 29:3683. [PMID: 39125086 PMCID: PMC11313806 DOI: 10.3390/molecules29153683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Interleukin-6 (IL-6) detection and monitoring are of great significance for evaluating the progression of many diseases and their therapeutic efficacy. Lateral flow immunoassay (LFIA) is one of the most promising point-of-care testing (POCT) methods, yet suffers from low sensitivity and poor quantitative ability, which greatly limits its application in IL-6 detection. Hence, in this work, we integrated Aushell nanoparticles (NPs) as new LFIA reporters and achieved the colorimetric and photothermal dual-mode detection of IL-6. Aushell NPs were conveniently prepared using a galvanic exchange process. By controlling the shell thickness, their localized surface plasmon resonance (LSPR) peak was easily tuned to near-infrared (NIR) range, which matched well with the NIR irradiation light. Thus, the Aushell NPs were endowed with good photothermal effect. Aushell NPs were then modified with IL-6 detection antibody to construct Aushell probes. In the LFIA detection, the Aushell probes were combined with IL-6, which were further captured by the capture IL-6 antibody on the test line of the strip, forming a colored band. By observation with naked eyes, the colorimetric qualitative detection of IL-6 was achieved with limit of 5 ng/mL. By measuring the temperature rise of the test line with a portable infrared thermal camera, the photothermal quantitative detection of IL-6 was performed from 1~1000 ng/mL. The photothermal detection limit reached 0.3 ng/mL, which was reduced by nearly 20 times compared with naked-eye detection. Therefore, this Aushell-based LFIA efficiently improved the sensitivity and quantitative ability of commercial colloidal gold LFIA. Furthermore, this method showed good specificity, and kept the advantages of convenience, speed, cost-effectiveness, and portability. Therefore, this Aushell-based LFIA exhibits practical application potential in IL-6 POCT detection.
Collapse
Affiliation(s)
- Congying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Yue Dou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Yao Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Xuan Jiang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Xiaomei Tu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Ruiqiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| |
Collapse
|
5
|
Sapna K, Shim YB, Arun AB, Prasad KS. Diagnosis of Neglected Tropical Zoonotic Disease, Leptospirosis in a Clinical Sample Using a Photothermal Immunosensor. Anal Chem 2024; 96:409-418. [PMID: 38112052 DOI: 10.1021/acs.analchem.3c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photothermal biosensing based on nanomaterials has gained increasing attention because of its universality and simplicity. Diagnostics of neglected tropical diseases (NTDs) in low-resource settings are challenging in terms of speed, accuracy, and cost-effectiveness. By exploiting the photothermal property of carbon nanotubes (CNTs), simple thermometric measurements can be used to generate quantitative biochemical readouts. Herein, a photothermal immunosensor for leptospirosis detection based on a CNT-labeled monoclonal antibody is established through the sensitive monitoring of the target biomarker LipL32 with a simple thermometer. Under optimum conditions, a linear range up to 106 pg/mL with a limit of detection (LOD) of 300 fg/mL was obtained. Overall, the proposed immunoassay exhibited good precision, selectivity, and acceptable stability. Clinical patient sample analysis with the photothermal sensor proved the differential diagnosis of leptospirosis along with other febrile illnesses. On the other hand, we have also characterized the photothermal sensor platform with surface morphological and spectral techniques to confirm the robust and successful fabrication of the immunosensor. The fabricated photothermal sensor could be used as a potential diagnostic tool for the early detection of NTDs in patients from resource-limited settings, as it does not require sample pretreatment, sophisticated equipment, or skilled labor. Moreover, the developed photothermal assay follows ASSURED criteria, very crucial for diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan 46241, Republic of Korea
| | | | - Kariate Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| |
Collapse
|
6
|
Zhao S, Wei H, Zhang X, Wang F, Su Z. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination. J Colloid Interface Sci 2024; 653:1504-1513. [PMID: 37804618 DOI: 10.1016/j.jcis.2023.09.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Solar-driven water purification is a promising technology that can effectively utilize solar energy for seawater desalination. However, poor materials are unable to meet the dense energy of solar steam generation in natural sunlight for real-time practical applications. Therefore, the demand for energy density can be increased by using improved semiconductor aerogel materials. Here, we report a simple chemical method to obtain a CuS@ATP/PS composite aerogel (named CuAP), which was made of attapulgite (ATP) and CuS loaded onto it using an N-template to give it good photothermal characteristics (CuS@ATP), and then cross-link it with potato starch (PS). The evaporation rate of CuAP-15 aerogel in pure water at 1 kW m-2 solar radiation is 1.57 kg m-2 h-1. Meanwhile, CuAP-15 aerogel showed excellent salt resistance with an evaporation rate of 1.35 kg m-2 h-1 in 20 wt% NaCl solution. And also exhibited excellent cycling durability in cycling stability tests. More importantly, the freshwater yield can reach 6.54 kg m-2 under natural light irradiation for 11 h. Therefore, CuAP aerogel has a great prospect of application in the field of seawater desalination in the future.
Collapse
Affiliation(s)
- Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huangfang Wei
- Zhejiang Zili Polymer Chemistry Materials Co., Ltd, Shaoxing 312300, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Chen Y, Huang Y, Chen S, Gao L, Zhang S, Dai H, Zeng B. A pressure-colorimetric multimode system with photothermal activated multiple rolling signal amplification for ovarian cancer biomarker detection. Talanta 2023; 265:124876. [PMID: 37390673 DOI: 10.1016/j.talanta.2023.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Utilizing the photothermal effect to activate enzyme activity, realize signal conversion and amplification show promising prospects in biosensing. Herein, a pressure-colorimetric multi-mode bio-sensor was proposed through the multiple rolling signal amplification strategy of photothermal control. Under NIR light radiation, the Nb2C MXene labeled photothermal probe caused notable temperature elevation on a multi-functional signal conversion paper (MSCP), leading to decomposition of thermal responsive element and in-situ formation of Nb2C MXene/Ag-Sx hybrid. The generation of Nb2C MXene/Ag-Sx hybrid accompanied with valid color change from pale yellow to dark brown on MSCP. Moreover, the Ag-Sx as a signal amplification element enhanced the NIR light absorption to further improve the photothermal effect of Nb2C MXene/Ag-Sx thereby induce cyclic in situ production of Nb2C MXene/Ag-Sx hybrid with rolling enhanced photothermal effect. Subsequently, the continuously enhanced photothermal effect rolling activated catalase-like activity of Nb2C MXene/Ag-Sx, which accelerated the decomposition of H2O2 and promoted the pressure elevation. Therefore, the rolling-enhanced photothermal effect and rolling activated catalase-like activity of Nb2C MXene/Ag-Sx considerately amplified the pressure and color change. Making full use of multi-signal readout conversion and rolling signal amplification, accurate results can be obtained in a short time, whether in the laboratory or in the patient's homes.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Baoshan Zeng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
8
|
Yan G, Ni H, Li X, Qi X, Yang X, Zou H. Plasmonic Cu 2-xSe Mediated Colorimetric/Photothermal Dual-Readout Detection of Glutathione. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111787. [PMID: 37299690 DOI: 10.3390/nano13111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Plasmonic nanomaterials have attracted great attention in the field of catalysis and sensing for their outstanding electrical and optical properties. Here, a representative type of nonstoichiometric Cu2-xSe nanoparticles with typical near-infrared (NIR) localized surface plasma resonance (LSPR) properties originating from their copper deficiency was applied to catalyze the oxidation of colorless TMB into their blue product in the presence of H2O2, indicating they had good peroxidase-like activity. However, glutathione (GSH) inhibited the catalytic oxidation of TMB, as it can consume the reactive oxygen species. Meanwhile, it can induce the reduction of Cu(II) in Cu2-xSe, resulting in a decrease in the degree of copper deficiency, which can lead to a reduction in the LSPR. Therefore, the catalytic ability and photothermal responses of Cu2-xSe were decreased. Thus, in our work, a colorimetric/photothermal dual-readout array was developed for the detection of GSH. The linear calibration for GSH concentration was in the range of 1-50 μM with the LOD as 0.13 μM and 50-800 μM with the LOD as 39.27 μM. To evaluate the practicability of the assay, tomatoes and cucumbers were selected as real samples, and good recoveries indicated that the developed assay had great potential in real applications.
Collapse
Affiliation(s)
- Guojuan Yan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huanhuan Ni
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoxiao Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xi Yang
- Department of Basic Medical Science, Guiyang Healthcare Vocational University, Guiyang 550081, China
| | - Hongyan Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Gu K, Zhong H. A general methodology to measure the light-to-heat conversion efficiency of solid materials. LIGHT, SCIENCE & APPLICATIONS 2023; 12:120. [PMID: 37193685 DOI: 10.1038/s41377-023-01167-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Light-to-heat conversion has been intensively investigated due to the potential applications including photothermal therapy and solar energy harvesting. As a fundamental property of materials, accurate measurement of light-to-heat conversion efficiency (LHCE) is of vital importance in developing advanced materials for photothermal applications. Herein, we report a photothermal and electrothermal equivalence (PEE) method to measure the LHCE of solid materials by simulating the laser heating process with electric heating process. The temperature evolution of samples during electric heating process was firstly measured, enabling us to derive the heat dissipation coefficient by performing a linear fitting at thermal equilibrium. The LHCE of samples can be calculated under laser heating with the consideration of heat dissipation coefficient. We further discussed the effectiveness of assumptions by combining the theoretical analysis and experimental measurements, supporting the obtained small error within 5% and excellent reproducibility. This method is versatile to measure the LHCE of inorganic nanocrystals, carbon-based materials and organic materials, indicating the applicability of a variety of materials.
Collapse
Affiliation(s)
- Kai Gu
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
10
|
Liu X, Wang F, Liu L, Li T, Zhong X, Lin H, Zhang Y, Xue W. Functionalized polydopamine nanospheres as in situ spray for photothermal image-guided tumor precise surgical resection. Biosens Bioelectron 2023; 222:114995. [PMID: 36516631 DOI: 10.1016/j.bios.2022.114995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Surgical resection is a critical procedure for treatment of solid tumor, which commonly suffers from postoperative local recurrence due to the possibility of positive surgical margin. Although the widely used clinical imaging techniques (CT, MRI, PET, etc.) show beneficial effects in providing a macroscopic view of preoperative tumor position, they are still failing to provide intraoperative real-time imaging navigation during the surgery and need oral or intravenous injection contrast agents with risk of adverse effects. In this work, we present a nano-spray assisted photothermal imaging system for in vitro cells discrimination as well as in vivo visualization of tumor position and border that guides real-time precise tumor resection during surgery (even for tiny tumor less than 3 mm). Herein, the nano-spray were prepared by RGD peptide functionalized polydopamine (PDA-RGD) nanospheres with excellent photothermal conversion efficiency (54.27%), stability and reversibility, which target ανβ3 integrin overexpressed tumor cells. Such PDA-RGD serve as nanothermometers that convert and amplify biological signal to intuitive thermal image signal, depicting the tumor margin in situ. In comparison to conventional imaging techniques, our approach through topical spraying together with portable infrared camera has the characteristics of low cost, convenient, no radiation hazard, real-time intraoperative imaging-guidance and avoiding the adverse effects risk of oral or intravenous contrast agent. This technology provides a new universal tool for potentially assisting surgeons' decision in real-time during surgery and aiding to improved outcome.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; Center for Hybrid Nanostructure (CHyN), Department of Physics, University of Hamburg, Hamburg, 22761, Germany
| | - Fan Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Li Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiangyu Zhong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Hongsheng Lin
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
12
|
Franko M, Goljat L, Liu M, Budasheva H, Žorž Furlan M, Korte D. Recent Progress and Applications of Thermal Lens Spectrometry and Photothermal Beam Deflection Techniques in Environmental Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:472. [PMID: 36617073 PMCID: PMC9824884 DOI: 10.3390/s23010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This paper presents recent development and applications of thermal lens microscopy (TLM) and beam deflection spectrometry (BDS) for the analysis of water samples and sea ice. Coupling of TLM detection to a microfluidic system for flow injection analysis (μFIA) enables the detection of microcystin-LR in waters with a four samples/min throughput (in triplicate injections) and provides an LOD of 0.08 µg/L which is 12-times lower than the MCL for microcystin-LR in water. μFIA-TLM was also applied for the determination of total Fe and Fe(II) in 3 µL samples of synthetic cloudwater. The LODs were found to be 100 nM for Fe(II) and 70 nM for total Fe. The application of µFIA-TLM for the determination of ammonium in water resulted in an LOD of 2.3 µM for injection of a 5 µL sample and TLM detection in a 100 µm deep microfluidic channel. For the determination of iron species in sea ice, the BDS was coupled to a diffusive gradient in the thin film technique (DGT). The 2D distribution of Fe(II) and total Fe on DGT gels provided by the BDS (LOD of 50 nM) reflected the distribution of Fe species in sea ice put in contact with DGT gels.
Collapse
Affiliation(s)
- Mladen Franko
- Correspondence: (M.F.); (D.K.); Tel.: +386-5-331-53-29 (M.F.)
| | | | | | | | | | - Dorota Korte
- Correspondence: (M.F.); (D.K.); Tel.: +386-5-331-53-29 (M.F.)
| |
Collapse
|
13
|
Lu L, Hu X, Zeng R, Lin Q, Huang X, Li M, Tang D. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe-N-C nanozyme. Anal Chim Acta 2022; 1229:340383. [PMID: 36156227 DOI: 10.1016/j.aca.2022.340383] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Sensors based on colorimetry, fluorescence, and electrochemistry have been widely employed to detect acetylcholinesterase and its inhibitors, however, there are only a minority of strategies for AChE detection based on photothermal method. This work reports a versatile dual-mode colorimetric and photothermal biosensing platform for acetylcholinesterase (AChE) detection and its inhibitor (paraoxon-ethyl, a model of AChE inhibitors) monitor based on Fe-N-C/H2O2/3,3',5,5'-tetramethylbenzidine (TMB) system. The Fe-N-C with abundant active Fe-Nx sites shows outstanding peroxidase-mimicking activity and can be used to promote the generation of •OH by H2O2 to oxidize TMB. However, the introduction of mercapto molecules tending to coordinate with metal atoms result in the block of action site in Fe-N-C, thereby decrease its peroxidase-mimetic activity. The designed biosensor principle is based on the block of active sites of Fe-N-C by thiocholine (TCh, one kind of mercapto molecules) that can be produced by acetylthiocholine (ATCh) in the presence of AChE. Under optimum conditions, the limit of detection (LOD) for AChE activity is 1.9 mU mL-1 (colorimetric) and 2.2 mU mL-1 (photothermal), while for paraoxon-ethyl is 0.012 μg mL-1 (colorimetric) and 0.013 μg mL-1 (photothermal), respectively. The assay we proposed not only can be designed to monitor AChE detection and its inhibitors, but also can be easily extended for the detection of other biomolecules relate to the generation or consumption of H2O2.
Collapse
Affiliation(s)
- Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xuehan Hu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
14
|
Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis 2021; 13:1837-1850. [PMID: 34463130 PMCID: PMC8407278 DOI: 10.4155/bio-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are a class of viruses that cause respiratory tract infections in birds and mammals. Severe acute respiratory syndrome and Middle East respiratory syndrome are pathogenic human viruses. The ongoing coronavirus causing a pandemic of COVID-19 is a recently identified virus from this group. The first step in the control of spreading the disease is to detect and quarantine infected subjects. Consequently, the introduction of rapid and reliable detection methods for CoVs is crucial. To date, several methods were reported for the detection of coronaviruses. Nanoparticles play an important role in detection tools, thanks to their high surface-to-volume ratio and exclusive optical property enables the development of susceptible analytical nanoparticle-based sensors. The studies performed on using nanoparticles-based (mainly gold) sensors to detect CoVs in two categories of optical and electrochemical were reviewed here. Details of each reported sensor and its relevant analytical parameters are carefully provided and explained.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Farzaneh Lotfipour
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Biotecnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Faculty of Pharmacy, Near East University, PO box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
15
|
Ding L, Shao X, Wang M, Zhang H, Lu L. Dual-mode immunoassay for diethylstilbestrol based on peroxidase activity and photothermal effect of black phosphorus-gold nanoparticle nanohybrids. Anal Chim Acta 2021; 1187:339171. [PMID: 34753561 DOI: 10.1016/j.aca.2021.339171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Nanozyme-mediated 3,3',5,5'-tetramethylbenzidine (TMB) - H2O2 systems have spawned the establishment of multiple colorimetric sensing platforms that are effective but sometimes subject to low sensitivity. Taking temperature as the output signal, photothermal effects lead to new strategies for sensitive detection. In this paper, a colorimetric and photothermal dual-mode immunoassay for diethylstilbestrol (DES) was constructed. It is based on the oxidation reaction of TMB catalyzed by black phosphorus-gold nanoparticle (BP/Au) nanohybrids, and the kinetics as well as catalytic mechanism of the nanohybrids were investigated in detail for the first time. Herein, the nanohybrids playcatalytic and photothermal dual roles. Moreover, the one-electron oxidation product of TMB (oxidized TMB) not only acts as chromogenic agent but also an excellent NIR laser-driven photothermal agent. The temperature (ΔT/°C) was gauged by a portable digital thermometer. Through an indirect competition strategy, a simple, sensitive, and economic immunosensor was proposed. Higher DES content in the sample correlated with less BP/Au nanohybrids conjugated to the surface of ELISA microplate, a weaker color change, and a lower temperature variation when exposed to laser irradiation. This method was applied for DES determination in real samples with gratifying recovery rates, showing great promise in food safety inspection applications.
Collapse
Affiliation(s)
- Linhe Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xinyu Shao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
16
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Zhang Y, Wei Y, Liu P, Zhang X, Xu Z, Tan X, Chen M, Wang J. ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 93:11540-11546. [PMID: 34369746 DOI: 10.1021/acs.analchem.1c02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is known to have a high mortality rate, and its early diagnosis remains challenging due to the occult location of the pancreas. Exosomes derived from pancreatic cancer cells specifically express glypican-1, which may provide a liquid biopsy opportunity for the early diagnosis of pancreatic cancer. Herein, an inductively coupled plasma mass spectrometry (ICP-MS) and photothermal dual-readout platform was proposed for the ultrasensitive and point-of-care analysis of pancreatic cancer exosomes. In our design, exosomes were specifically captured by the sandwich immunoassay, and simultaneously, alkaline phosphatase was introduced in a low-background manner. The alkaline phosphatase triggered the hydrolysis of l-ascorbic acid 2-phosphate to produce ascorbic acid, followed by the etching of Fe3O4@MnO2 nanoflowers. As a result, the Mn2+ generated by etching stripped off the Fe3O4 and was quantified using ICP-MS. Meanwhile, the reduced Fe3O4@MnO2 was applied for the photothermal assay by oxidizing dopamine with MnO2. The protocol exhibits a detection limit down to 19.1 particles mL-1, which is the most sensitive protocol reported so far. To our knowledge, this is the first endeavor for exosome quantification using ICP-MS and photothermal methods. The developed dual-readout platform not only is capable of distinguishing pancreatic cancer patients from healthy people, but also shows excellent discernibility of individual differences at low concentrations of exosomes. This dual-readout assay is a promising platform for the ultrasensitive and point-of-care detection of exosomes in liquid biopsy-based early cancer diagnosis.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peng Liu
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaodong Tan
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
18
|
Li X, Lu S, Mu X, Li T, Sun S, Zhao Y, Hai J, Wang B. Red-light-responsive coordination polymers nanorods: New strategy for ultrasensitive photothermal detection of targeted cancer cells. Biosens Bioelectron 2021; 190:113417. [PMID: 34134071 DOI: 10.1016/j.bios.2021.113417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The development of highly sensitive and simple detection methods for cancer cells is an important challenge to achieve early cancer diagnosis and effective treatment. In this paper, folic acid (FA)-conjugated platinum (IV) methylene blue (MB) coordination polymers nanorods (denoted as FA-PtCPs NRs) were developed by the photochemical method. The structure of the PtCPs NRs was investigated using the meta-dynamics and genetic algorithms (MTD-GC) method, and it was found that the coordination bond was formed between platinum (IV) and N atoms of MB. The field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) indicated that the morphology of PtCPs NRs was rod-like. The resulting FA-PtCPs NRs was used for the specific and ultra-sensitive temperature detection of cancer cells based on PtCPs NRs as a signal trigger unit and FA as a target recognition tool. After three-step reaction, oxidized 3,3',5,5'-tetramethylbenzidine (ox-TMB) with photothermal effect was obtained. Under 660 nm laser irradiation, such detection platform can convert the molecular recognition signal between FA and folate receptor (FR) of cancer cells into readable temperature value, which can be directly read by an ordinary thermometer, with a detection limit as low as 2 cells/mL. In addition, FA-PtCPs NRs could be used as fluorescent probes for in-situ bioimaging. Therefore, this photothermal sensing platform has a broad prospect in the field of point-of-care detection of cancer cells.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Siyu Lu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Yang Zhao
- School of Life Sciences, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| |
Collapse
|
19
|
Li G, Yang SL, Liu WS, Guo MY, Liu XY, Bu R, Gao EQ. Photoinduced versus spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01079d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The MOF shows charge-transfer sensitized Eu(iii) emission and spontaneous/photoinduced guest-to-host electron transfer, which allow chromic and luminescent sensing of NH3 (luminescence turn-off) and O2 (luminescence turn-on).
Collapse
Affiliation(s)
- Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Yue Guo
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
20
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
21
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
22
|
Chen MT, Xie XD, Meng JX, Ou YC, Wu JZ, Tong ML. Tunable photoluminescence in flexible carboxylate ligand-based coordination polymers with interesting topologies and Fe3+ sensitivity. CrystEngComm 2020. [DOI: 10.1039/d0ce01043j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes 1–5, showing different interesting topological networks from 1D ladder to 3D frameworks, exhibit selective and sensitive fluorescence quenching of Fe3+ ion.
Collapse
Affiliation(s)
- Man-Ting Chen
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Xiao-Dan Xie
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Jin-Xiu Meng
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Yong-Cong Ou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Jian-Zhong Wu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
23
|
Wang C, Liu X, Wulf V, Vázquez-González M, Fadeev M, Willner I. DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. ACS NANO 2019; 13:3424-3433. [PMID: 30822379 DOI: 10.1021/acsnano.8b09470] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (AuNPs) or gold nanorods (AuNRs) are loaded in polyacrylamide hydrogels cooperatively cross-linked by bis-acrylamide and nucleic acid duplexes or boronate ester-glucosamine and nucleic acid duplexes. The thermoplasmonic properties of AuNPs and AuNRs are used to control the stiffness of the hydrogels. The irradiation of the AuNP-loaded (λ = 532 nm) or the AuNR-loaded (λ = 808 nm) hydrogels leads to thermoplasmonic heating of the hydrogels, the dehybridization of the DNA duplexes, and the formation of hydrogels with lower stiffness. By ON/OFF irradiation, the hydrogels are switched between low- and high-stiffness states. The reversible control over the stiffness properties of the hydrogels is used to develop shape-memory hydrogels and self-healing soft materials and to tailor thermoplasmonic switchable drug release. In addition, by designing bilayer composites of AuNP- and AuNR-loaded hydrogels, a reversible thermoplasmonic, light-induced bending is demonstrated, where the bending direction is controlled by the stress generated in the respective bilayer composite.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Xia Liu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Verena Wulf
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Michael Fadeev
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
24
|
Lu L, Wang M, Zhang D, Zhang H. Establishment of an immunofiltration strip for the detection of 17β-estradiol based on the photothermal effect of black phosphorescence. Analyst 2019; 144:6647-6652. [DOI: 10.1039/c9an01495k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a novel immunofiltration strip method with temperature as the readout signal based on the photothermal effect of black phosphorus nanosheets was established. The temperature was monitored by a portable temperature sensor.
Collapse
Affiliation(s)
- Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology
- Institute of Biomedical Sciences
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University
- College of Life Science
- Shandong Normal University
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology
- Institute of Biomedical Sciences
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University
- College of Life Science
- Shandong Normal University
| | - Dan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology
- Institute of Biomedical Sciences
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University
- College of Life Science
- Shandong Normal University
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology
- Institute of Biomedical Sciences
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University
- College of Life Science
- Shandong Normal University
| |
Collapse
|
25
|
Guo Z, Zhou X, Hou C, Ding Z, Wen C, Zhang LJ, Jiang BP, Shen XC. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomater Sci 2019; 7:3886-3897. [DOI: 10.1039/c9bm00762h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A bioinspired nanoplatform composed of Cu(ii)-chlorophyll–hyaluronic acid nanoparticles (Cu(ii)Chl–HA NPs) was developed for targeting cancer and combined photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xiaohong Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhaoyang Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Lai-Jun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|