1
|
Li X, Liu Q, Song W. Chemical fixation of CO 2/CS 2 to access iodoallenyl oxazolidinones and allenyl thiazolidine-thiones. Chem Commun (Camb) 2024. [PMID: 39073322 DOI: 10.1039/d4cc02894e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Constructing heterocyclic compounds by chemical fixation of CO2/CS2 as a C1 building block is a promising approach. An efficient and environmentally friendly synthetic approach has been developed using CO2/CS2 to prepare complicated allenyl heterocycles with high yields and diastereoselectivities in a metal-free manner under mild conditions. NIS promoted CO2 fixation and the cyclization reaction by exclusive 1,4-syn-addition of 1,3-enynes rather than 1,2-addition or 3,4-addition, while CS2 participated in unique 1,4-syn-hydrothiolation of 1,3-enynes to afford allenyl heterocycles with different reaction patterns.
Collapse
Affiliation(s)
- Xuejian Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Qinglong Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Wangze Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
2
|
Shu XR, Li MH, Wu C, Luo XN, Yang DQ, Yang MQ, Lu YJ, Ge GP, Liu J, Wei WT. Four-Component Radical 1,2-Selenosulfonylation of Allenes. Org Lett 2024; 26:5705-5712. [PMID: 38934776 DOI: 10.1021/acs.orglett.4c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Selenosulfones, as pivotal pharmaceutical molecule frameworks, have become a research hotspot in modern organic synthesis due to their vital need for efficient preparation. Herein, we have developed an iron-catalyzed four-component controllable radical tandem reaction of allenes involving cycloketone oxime esters, 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO), and diphenyl diselenides for the synthesis of complex selenosulfones. This is the first case of achieving the 1,2-selenosulfonylation of allenes via a radical process, wherein precise control of radical rates and polarity matching enhance high regioselective conversion. The reaction conditions are ecofriendly and mild with step-efficiency by forming two new C-S bonds and one C-Se bond in one pot. Moreover, the 1,2-selenosulfonylation of allenes can be achieved by replacing cycloketone oxime esters with aryldiazonium tetrafluoroborates in this system.
Collapse
Affiliation(s)
- Xiao-Rong Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Mu-Han Li
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Cuiyan Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, 315211, China
| | - Xi-Ni Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Dong-Qing Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Ming-Qi Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Yue-Jiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| |
Collapse
|
3
|
Li H, Khan I, Li Q, Zhang YJ. Pd-Catalyzed Asymmetric Three-Component Allenol Carbopalladation and Allylic Cycloaddition Cascade: A Route to Functionalized Tetrahydrofurans. Org Lett 2022; 24:2081-2086. [PMID: 35274964 DOI: 10.1021/acs.orglett.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first Pd-catalyzed asymmetric three-component reaction of 2,3-allenol, aryl iodides, and 2-arylmethylenemolononitriles has been developed via an allenol carbopalladation and an allylic cycloaddition cascade. This process allows rapid access to substituted tetrahydrofurans bearing diverse functional groups in good yields with high diastereoselectivities and excellent enantioselectivities. The concise total synthesis of a lignan, (-)-2-episesaminone, has been achieved by the elaboration of a functionalized tetrahydrofuran obtained from this reaction.
Collapse
Affiliation(s)
- Hongfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ijaz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Xu H, Han T, Luo X, Deng W. Construction of
3‐Azabicyclo
[3.1.0]hexane Backbone by the Reaction of Allenes with Allylamines
via
Tandem Michael Addition and
Copper‐Mediated
Oxidative Carbanion Cyclization. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Xu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Teng Han
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiaoyan Luo
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
5
|
Wu F, Xie J, Zhu Z. 1,10‐Phenanthroline: A versatile ligand to promote copper‐catalyzed cascade reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fengtian Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| | - Jianwei Xie
- College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425199 China
| | - Zhiqiang Zhu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| |
Collapse
|
6
|
Sun X, Liu T, Yang Y, Gu Y, Liu Y, Ji Y, Luo K, Zhu J, Wu L. Visible‐Light‐Promoted Regio‐ and Stereoselective Oxyalkenyl‐ation of Phosphinyl Allenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Teng Liu
- College of Chemistry and Material ScienceShandong Agricultural University, Taian Shandong 271018 People's Republic of China
| | - Yan‐Tong Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yue‐Jie Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
7
|
Liu L, Ward RM, Schomaker JM. Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem Rev 2019; 119:12422-12490. [PMID: 31833759 DOI: 10.1021/acs.chemrev.9b00312] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 50 years have passed since Haszeldine reported the first addition of a trifluoromethyl radical to an allene; in the intervening years, both the chemistry of allenes and the reactivity of single-electron species have become topics of intense interest. In this Review, we provide an overview of the fundamentals of radical additions to allenes and highlight the emergence of theoretical and experimental evidence that reveals unique reactivity patterns for radical additions to allenes as compared with other unsaturated compounds. Factors capable of exerting control over the chemo-, regio-, and stereoselectivities of the attack of carbon- and heteroatom-based radicals at each of the three potential reactive sites in an allene substrate are described. These include reaction conditions, the nature of the attacking radical, the substitution pattern of the allene, and the length of the linker between the radical center and the proximal allene carbon in the substrate. Cycloaddition reactions between allenes and partners containing π-bonds, which are likely to proceed through radical pathways, are presented to highlight their ability to rapidly access complex polycyclic scaffolds. Finally, the synthetic utility of the products arising from these chemistries is described, including their applications to the construction of complex molecules.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Robert M Ward
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Jennifer M Schomaker
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
8
|
Lou J, Wang Q, Zhou YG, Yu Z. Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H Activation/Cyclopropanation Cascade. Org Lett 2019; 21:9217-9222. [DOI: 10.1021/acs.orglett.9b03589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Li H, Li T, Hsueh YJ, Wu X, Xu F, Zhang YJ. Tandem arylation and regioselective allylic etherification of 2,3-allenol via Pd/B cooperative catalysis. Org Biomol Chem 2019; 17:8075-8078. [PMID: 31460559 DOI: 10.1039/c9ob01792e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient method for the construction of arylated allylic ethers was developed via three-component tandem arylation and allylic etherification of 2,3-allenol with aryl iodides and alcohols. In the cooperative catalytic system of a palladium complex and triethylborane, the process allows rapid access to functionalized 1-arylvinylated 1,2-diol derivatives in good to high yields with complete branch-selectivities. The synthetic utility of the present process was demonstrated by the late-stage functionalization of a drug molecule, the gram-scale synthesis and the elaboration of the products.
Collapse
Affiliation(s)
- Hongfang Li
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China. and School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong32 University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Tao Li
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong32 University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yu Jen Hsueh
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong32 University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xue Wu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China.
| | - Feng Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Hwy, Shanghai 201400, P. R. China.
| | - Yong Jian Zhang
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong32 University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
10
|
Kawamura S, Sodeoka M. Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shintaro Kawamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Zhou X, Li G, Shao Z, Fang K, Gao H, Li Y, She Y. Four-component acyloxy-trifluoromethylation of arylalkenes mediated by a photoredox catalyst. Org Biomol Chem 2019; 17:24-29. [DOI: 10.1039/c8ob02239a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A four-component intermolecular trifluoromethylation–acyloxylation of arylalkenes induced by visible light has been developed in the presence of the photoredox catalyst Ru(bpy)3(PF6)2 under mild reaction conditions.
Collapse
Affiliation(s)
- Xiaocong Zhou
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- People's Republic of China
- Zhejiang Jiuzhou Pharmaceutical Technology Co
| | - Guijie Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- People's Republic of China
| | - Zongzhou Shao
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- People's Republic of China
| | - Kun Fang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- People's Republic of China
| | - Hongjun Gao
- Zhejiang Jiuzhou Pharmaceutical Technology Co
- Ltd
- Hangzhou
- People's Republic of China
| | - Yuanqiang Li
- Zhejiang Jiuzhou Pharmaceutical Technology Co
- Ltd
- Hangzhou
- People's Republic of China
| | - Yuanbin She
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- People's Republic of China
| |
Collapse
|