1
|
Shakour N, Mohadeszadeh M, Iranshahi M. Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review. Mini Rev Med Chem 2024; 24:3-25. [PMID: 37073153 DOI: 10.2174/1389557523666230417083143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 04/20/2023]
Abstract
BACKGROUND Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products. METHODS Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts. RESULTS Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures. CONCLUSION In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manijeh Mohadeszadeh
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Bai P, Jiang Y, Xiao T, Qin G. A Single‐Step Synthesis of Stereodefined Skipped Trienes: Pd‐Catalyzed Cascade Reaction of Terminal Alkynes with Allylic Halides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peizhi Bai
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Yubo Jiang
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Tiebo Xiao
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Guiping Qin
- Kunming University of Science and Technology Faculty of Science 727 South Jingming Road, Chenggong District, Kunming 650500 Kunming CHINA
| |
Collapse
|
3
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
4
|
Bao R, Zhang H, Tang Y. Biomimetic Synthesis of Natural Products: A Journey To Learn, To Mimic, and To Be Better. Acc Chem Res 2021; 54:3720-3733. [PMID: 34549936 DOI: 10.1021/acs.accounts.1c00459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Total synthesis of natural products has been one of the most exciting and dynamic areas in synthetic organic chemistry. Nowadays, the major challenge in this field is not whether a given target of interest can be synthesized but how to make it with commendable efficiency and practicality. To meet this grand challenge, a wise way is to learn from Mother Nature who is recognized for her superb capability of forging complicated and sometimes beyond-imagination molecules in her own delicate way. Indeed, since Sir Robert Robinson published his groundbreaking synthesis of tropinone in 1917, biomimetic synthesis of natural products, a process of imitating nature's way to make molecules, has evolved into one of the most popular research directions in organic synthesis.Our group has been engaging in biomimetic synthesis of natural products in the past decade. During this time, we have come to realize that the successful implementation of a biomimetic synthesis entails the orchestrated combination of bioinspiration and rational design. On the one hand, we prefer to utilize some elegant bioinspired transformations (e.g., Diels-Alder dimerization, 6π-electrocyclization, and [2 + 2]-photocycloaddition) as the key steps of our synthesis, which enable rapid construction of the core skeletons of the chased targets with high efficiency; on the other hand, various powerful reactions (e.g., dyotropic rearrangement of β-lactone, tandem aldol condensation/Grob fragmentation reaction, and organocatalytic asymmetric Mukaiyama-Michael addition) are rationally designed by us, which allow for facile access to the requisite precursors for attempting biomimetic transformations. In some cases, the proposed biomimetic transformation may fail to give a satisfactory result in practice, and thus we opt to develop creative tactics (e.g., hydrogen atom transfer-triggered vinyl cyclobutane ring opening/oxygen insertion/cyclization cascade) that can meet the challenge. Guided by this synthesis concept, we have achieved the total syntheses of multiple families of natural products of great importance in both chemistry and biology, representatives of which include xanthanolides, cytochalasans, and plakortin-type polyketides. Of note, most of these targets could be accessed in a concise, efficient, and scalable manner, which paves the way for further exploration of their biological functions and medicinal potential. Moreover, owing to their biomimetic nature, our syntheses provide valuable information for deciphering the underlying biosynthetic pathways of the chased targets, which could not be attained by other synthetic modes.
Collapse
Affiliation(s)
- Ruiyang Bao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haoyu Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Gayraud O, Laroche B, Casaretto N, Nay B. Synthesis of a Biomimetic Tetracyclic Precursor of Aspochalasins and Formal Synthesis of Trichoderone A. Org Lett 2021; 23:5755-5760. [PMID: 34291937 DOI: 10.1021/acs.orglett.1c01922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspochalasins are leucine-derived cytochalasins. Their complexity is associated with a high degree of biosynthetic oxidation, herein inspiring a two-phase strategy in total synthesis. We thus describe the synthesis of a putative biomimetic tetracyclic intermediate. The constructive steps are an intramolecular Diels-Alder reaction to install the isoindolone core of cytochalasins, whose branched precursor was obtained from a stereoselective Ireland-Claisen rearrangement performed from a highly unsaturated substrate. This also constitutes a formal synthesis of trichoderone A.
Collapse
Affiliation(s)
- Oscar Gayraud
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Benjamin Laroche
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS, Paris 75005, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau 91128, France.,Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS, Paris 75005, France
| |
Collapse
|
6
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno PT, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021; 60:15963-15971. [PMID: 33860618 DOI: 10.1002/anie.202102831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/11/2022]
Abstract
We accomplished the divergent total syntheses of ten pentacyclic cytochalasans (aspergillin PZ, trichodermone, trichoderones, flavipesines, and flavichalasines) from a common precursor aspochalasin D and revised the structures of trichoderone B, spicochalasin A, flavichalasine C, aspergilluchalasin based on structure network analysis of the cytochalasans biosynthetic pathways and DFT calculations. The key steps of the syntheses include transannular alkene/epoxyalkene and carbonyl-ene cyclizations to establish the C/D ring of pentacyclic aspochalasans. Our bioinspired approach to these pentacyclic cytochalasans validate the proposed biosynthetic speculation from a chemical view and provide a platform for the synthesis of more than 400 valuable cytochalasans bearing different macrocycles and amino-acid residues.
Collapse
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno P, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Upadhyay SP, Thapa P, Sharma R, Sharma M. 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia 2020; 146:104722. [PMID: 32920034 DOI: 10.1016/j.fitote.2020.104722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Isoindolin-1-one or 1-isoindolinone framework is referred to phthalimidines or benzo fused γ-lactams of the corresponding γ-amino carboxylic acids and has been of prime interest for scientists for last several decades. 1-Isoindolinone framework is found in a wide range of naturally occurring compounds with diverse biological activities and therapeutic potential for various chronic diseases. Recent developments in synthetic methods for their procurement have opened a new era of 1-isoindolinone chemistry. This review aims to provide an alphabetical quick reference guide to only 1-isoindolinone based natural products and its variable fused, oxidized and reduced state skeleton with information for advanced chemotaxonomic analyses, cellular targets/pathways and diverse biological activities and future use for medicinal chemistry.
Collapse
Affiliation(s)
- Sunil P Upadhyay
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States.
| | - Pritam Thapa
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ram Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Mukut Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| |
Collapse
|
9
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
McGeough CP, Strom AE, Jamison TF. Ni-Catalyzed Cross-Electrophile Coupling for the Synthesis of Skipped Polyenes. Org Lett 2019; 21:3606-3609. [PMID: 31046296 DOI: 10.1021/acs.orglett.9b01019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skipped polyenes featuring high ( E)-selectivity and varying methyl substitution patterns are synthesized using a nickel-catalyzed cross-coupling reaction between allyl trifluoroacetates and vinyl bromides. The utility of this cross-electrophile coupling is showcased in part by the synthesis of the RST fragment of the marine ladder polyether, maitotoxin. Construction of this fragment is particularly challenging due to the alternating methyl substitution pattern.
Collapse
Affiliation(s)
- Catherine P McGeough
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Alexandra E Strom
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy F Jamison
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
11
|
Fan Y, Zhang D, Tao X, Wang Y, Liu J, Li L, Zhao J, Yu L, He YP, Dai J, Tang Y. Biosynthetic Hypothesis-Guided Discovery and Total Syntheses of PKS–NRPS Hybrid Metabolites from Endophytic Fungus Periconia Species. Org Lett 2019; 21:1794-1798. [DOI: 10.1021/acs.orglett.9b00371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yijun Fan
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Dewu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanhao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-peng He
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Xu J, Lin B, Jiang X, Jia Z, Wu J, Dai WM. Intramolecular Diels–Alder Cycloaddition Approach toward the cis-Fused Δ5,6-Hexahydroisoindol-1-one Core of Cytochalasins. Org Lett 2019; 21:830-834. [DOI: 10.1021/acs.orglett.8b04129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Xu
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - Benguo Lin
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiuqing Jiang
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zejun Jia
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jinlong Wu
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei-Min Dai
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Reyes JR, Winter N, Spessert L, Trauner D. Biomimetic Synthesis of (+)-Aspergillin PZ. Angew Chem Int Ed Engl 2018; 57:15587-15591. [PMID: 30239081 PMCID: PMC6417427 DOI: 10.1002/anie.201809703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 11/08/2022]
Abstract
The cytochalasans are a large family of polyketide natural products with potent bioactivities. Amongst them, the aspochalasins show particularly intricate and fascinating structures. To gain insight into their structural diversity and innate reactivity, we have developed a rapid synthesis of aspochalasin D, the central member of the family. It proceeded in 13 steps starting from divinyl carbinol and utilized a high pressure Diels-Alder reaction that features high regio- and stereoselectivity. So far, our work has culminated in a biomimetic synthesis of aspergillin PZ, an intricate pentacyclic aspochalasan.
Collapse
Affiliation(s)
- Julius R Reyes
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nils Winter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Lukas Spessert
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
14
|
Reyes JR, Winter N, Spessert L, Trauner D. Biomimetic Synthesis of (+)‐Aspergillin PZ. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julius R. Reyes
- Department of ChemistryLudwig-Maximilians-Universität München Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistryNew York University 100 Washington Square East New York NY 10003 USA
| | - Nils Winter
- Department of ChemistryLudwig-Maximilians-Universität München Butenandtstrasse 5–13 81377 München Germany
| | - Lukas Spessert
- Department of ChemistryLudwig-Maximilians-Universität München Butenandtstrasse 5–13 81377 München Germany
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistryNew York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
15
|
Bao R, Tian C, Zhang H, Wang Z, Dong Z, Li Y, Gao M, Zhang H, Liu G, Tang Y. Total Syntheses of Asperchalasines A-E. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruiyang Bao
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Chong Tian
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haoyu Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Zhiguo Wang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Zhen Dong
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Yuanhe Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Mohan Gao
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haolin Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Gang Liu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Yefeng Tang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
- Collaborative Innovation Center for Biotherapy; State Key Laboratory of Biotherapy and Cancer Center; West China Medical School; Sichuan University; Chengdu 610041 China
- Beijing National Laboratory for Molecular Sciences (BNLMS); College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
16
|
Bao R, Tian C, Zhang H, Wang Z, Dong Z, Li Y, Gao M, Zhang H, Liu G, Tang Y. Total Syntheses of Asperchalasines A-E. Angew Chem Int Ed Engl 2018; 57:14216-14220. [DOI: 10.1002/anie.201808249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ruiyang Bao
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Chong Tian
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haoyu Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Zhiguo Wang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Zhen Dong
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Yuanhe Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Mohan Gao
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haolin Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Gang Liu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Yefeng Tang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Tsinghua University; Beijing 100084 China
- Collaborative Innovation Center for Biotherapy; State Key Laboratory of Biotherapy and Cancer Center; West China Medical School; Sichuan University; Chengdu 610041 China
- Beijing National Laboratory for Molecular Sciences (BNLMS); College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|