1
|
Prakash K, Sathian SP. Temperature-dependent differential capacitance of an ionic liquid-graphene-based supercapacitor. Phys Chem Chem Phys 2024; 26:4657-4667. [PMID: 38251719 DOI: 10.1039/d3cp05039d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
One of the critical factors affecting the performance of supercapacitors is thermal management. The design of supercapacitors that operate across a broad temperature range and at high charge/discharge rates necessitates understanding the correlation of the molecular characteristics of the device (such as interfacial structure and inter-ionic and ion-electrode interactions) with its macroscopic properties. In this study, we use molecular dynamics (MD) simulations to investigate the influence of Joule heating on the structure and dynamics of the ionic liquid (IL)/graphite-based supercapacitors. The temperature-dependent electrical double layer (EDL) and differential capacitance-potential (CD-V) curves of two different ([Bmim][BF4] and [Bmim][PF6]) IL-graphene pairs were studied under various thermal gradients. For the [Bmim][BF4] system, the differential capacitance curves transition from 'U' to bell shape under an applied thermal gradient (∇T) in the range from 3.3 K nm-1 to 16.7 K nm-1. Whereas in [Bmim][PF6], we find a positive dependence of differential capacitance with ∇T with a U-shaped CD-V curve. We examine changes in the EDL structure and screening potential (ϕ(z)) as a function of ∇T and correlate them with the trends observed in the CD-V curve. The identified correlation between the interfacial charge density and differential capacitance with thermal gradient would be helpful for the molecular design of the IL-electrode interface in supercapacitors or other chemical engineering applications.
Collapse
Affiliation(s)
- Kiran Prakash
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
2
|
Weng Z, Zhu J, Lu L, Ma Y, Cai J. Regulation of the electric double-layer capacitance of MoS2/ionic liquid by carbon modification. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Ers H, Voroshylova IV, Pikma P, Ivaništšev VB. Double layer in ionic liquids: Temperature effect and bilayer model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
de Araujo Chagas H, Fileti EE, Colherinhas G. A molecular dynamics study of graphyne-based electrode and biocompatible ionic liquid for supercapacitor applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Voroshylova IV, Ers H, Koverga V, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro M. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Vo P, Forsman J, Woodward CE. A semi-GCMC simulation study of electrolytic capacitors with adsorbed titrating peptides. J Chem Phys 2020; 153:174703. [PMID: 33167638 DOI: 10.1063/5.0025548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use semi-grand canonical Monte Carlo simulations to study an electrolytic capacitor with an adsorbed peptide on the electrode surfaces. Only homogeneous peptides are considered, consisting of only a single residue type. We find that the classical double-hump camel-shaped differential capacitance in such systems is augmented by the addition of a third peak, due to the capacitance contribution of the peptide, essentially superimposed on the salt contribution. This mechanistic picture is justified using a simple mean-field analysis. We find that the position of this third peak can be tuned to various surface potential values by adjusting the ambient pH of the electrolyte solution. We investigate the effect of changing the residue type and the concentration of the adsorbed peptide and of the supporting electrolyte. Varying the residue species and pH allows one to modify the capacitance profile as a function of surface potential, facilitating the design of varying discharging patterns for the capacitor.
Collapse
Affiliation(s)
- Phuong Vo
- School of Science, University of New South Wales, Canberra, Canberra ACT 2600, Australia
| | - Jan Forsman
- Department of Theoretical Chemistry Chemical Centre, Lund University, P.O. Box S-22100, Lund, Sweden
| | - Clifford E Woodward
- School of Science, University of New South Wales, Canberra, Canberra ACT 2600, Australia
| |
Collapse
|
7
|
Zhu J, Lu L, Shi L, Dai Z, Zhuang W, Weng Z. Electric double-layer of [emim][DCA] ionic liquid at heterogeneous interface of TiO2/C composite: From simulation to experiment. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Shyama M, Lakshmipathi S. Water confined (H2O) n=1–10 amino acid-based ionic liquids – A DFT study on the bonding, energetics and IR spectra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Effects of carboxylic group on bulk and electrical double layer properties of amino acid ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Neto A, Fileti E. An atomistic physico-chemical description of acetonitrile/tricyanomethanide based electrolytes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Fileti EE, Colherinhas G. Investigating the asymmetry in the EDL response of C60/graphene supercapacitors. Phys Chem Chem Phys 2019; 21:15362-15371. [DOI: 10.1039/c9cp02664a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations were employed to model C60/graphene composite electrodes that can expand the effective area and performance of supercapacitors.
Collapse
Affiliation(s)
- Eudes Eterno Fileti
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | | |
Collapse
|
12
|
Nie B, Li R, Wu Y, Yuan X, Zhang W. Theoretical Calculation of the Thermodynamic Properties of 20 Amino Acid Ionic Liquids. J Phys Chem B 2018; 122:10548-10557. [PMID: 30359517 DOI: 10.1021/acs.jpcb.8b06813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermodynamic properties of gas-phase amino acid ionic liquids (AAILs) containing 20 amino acids ([AA]-) and 1-ethyl-3-methylimidazolium ([Emim]+) are studied using a combination of the ab initio method, molecular dynamics simulations, Born-Haber (BH) cycle analysis, and isodesmic reactions. The M06-2X/TZVP method is used to explore the structure and dissociation enthalpies of [Emim][AA] by considering dispersion interaction, and the MP2/Aug-cc-pVTZ method is used to correct these enthalpies. The vaporization enthalpies of all 20 AAILs are calculated by molecular dynamics simulations, and the gas-phase formation enthalpies (Δf H) of the 20 [AA]- anions and [Emim]+ cation are calculated by the density functional theory/M06-2X method and isodesmic reaction approaches. To obtain the Δf H of the AAILs, interconnections in the corresponding BH cycles are evaluated. A systematic study of the 20 [Emim][AA] ion pairs provides some initial factors contributing to the thermodynamic properties of AAILs: including length of the alkyl chain, interatomic electronic effects, steric repulsion from the cyclic group, and H-bonds formed by functional groups. Generally speaking, the results of this work provide insights into the structure-property relationships of not only ILs but also any ionic or molecular substance.
Collapse
|
13
|
Colherinhas G, Malaspina T, Fileti EE. Storing Energy in Biodegradable Electrochemical Supercapacitors. ACS OMEGA 2018; 3:13869-13875. [PMID: 30411051 PMCID: PMC6217657 DOI: 10.1021/acsomega.8b01980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 05/04/2023]
Abstract
The development of green and biodegradable electrical components is one of the main fronts of research to overcome the growing ecological problem related to the issue of electronic waste. At the same time, such devices are highly desirable in biomedical applications such as integrated bioelectronics, for which biocompatibility is also required. Supercapacitors for storage of electrochemical energy, designed only with biodegradable organic matter would contemplate both aspects, that is, they would be ecologically harmless after their service lifetime and would be an important component for applications in biomedical engineering. By means of atomistic simulations of molecular dynamics, we propose a supercapacitor whose electrodes are formed exclusively by self-organizing peptides and whose electrolyte is a green amino acid ionic liquid. Our results indicate that this supercapacitor has a high potential for energy storage with superior performance than conventional supercapacitors. In particular its capacity to store energy was estimated to be almost 20 times greater than an analogue one of planar metallic electrodes.
Collapse
Affiliation(s)
- Guilherme Colherinhas
- Departamento
de Física, CEPAE, Universidade Federal
de Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Thaciana Malaspina
- Instituto
de Ciência e Tecnologia, Universidade
Federal de São Paulo, 12247-014 São José
dos Campos, São Paulo, Brazil
| | - Eudes Eterno Fileti
- Instituto
de Ciência e Tecnologia, Universidade
Federal de São Paulo, 12247-014 São José
dos Campos, São Paulo, Brazil
| |
Collapse
|
14
|
|
15
|
Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. NANO-MICRO LETTERS 2018; 10:33. [PMID: 30393682 PMCID: PMC6199082 DOI: 10.1007/s40820-018-0188-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/21/2017] [Indexed: 05/21/2023]
Abstract
Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.
Collapse
Affiliation(s)
- Zheng Bo
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, People's Republic of China.
| | - Changwen Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, People's Republic of China
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, People's Republic of China
| | - Kostya Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Joint CSIRO-QUT Sustainable Processes and Devices Laboratory, Lindfield, NSW, 2070, Australia
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, People's Republic of China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, People's Republic of China
| |
Collapse
|
16
|
Chaban VV, Andreeva NA, Fileti EE. Graphene/ionic liquid ultracapacitors: does ionic size correlate with energy storage performance? NEW J CHEM 2018. [DOI: 10.1039/c8nj04399j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrolytes formed by ions of similar volumes show better performance in supercapacitor applications.
Collapse
Affiliation(s)
| | - Nadezhda A. Andreeva
- Department of Physics
- St. Petersburg State University
- St. Petersburg
- Russian Federation
| | - Eudes Eterno Fileti
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| |
Collapse
|
17
|
Kaur S, Sharma S, Kashyap HK. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study. J Chem Phys 2017; 147:194507. [DOI: 10.1063/1.4996644] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shobha Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|