1
|
Li H, Wang J, Kim H, Peng X, Yoon J. Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-pyran Scaffold: From Design to Imaging and Theranostics. Angew Chem Int Ed Engl 2024; 63:e202311764. [PMID: 37855139 DOI: 10.1002/anie.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
2
|
Das S, Indurthi HK, Asati P, Sharma DK. Small Molecule Fluorescent Probes for Sensing and Bioimaging of Nitroreductase. ChemistrySelect 2022. [DOI: 10.1002/slct.202102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samarpita Das
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Pulkit Asati
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| |
Collapse
|
3
|
Skwarska A, Calder EDD, Sneddon D, Bolland H, Odyniec ML, Mistry IN, Martin J, Folkes LK, Conway SJ, Hammond EM. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chem Biol 2021; 28:1258-1270.e13. [PMID: 33910023 PMCID: PMC8460716 DOI: 10.1016/j.chembiol.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Tumor hypoxia is associated with therapy resistance and poor patient prognosis. Hypoxia-activated prodrugs, designed to selectively target hypoxic cells while sparing normal tissue, represent a promising treatment strategy. We report the pre-clinical efficacy of 1-methyl-2-nitroimidazole panobinostat (NI-Pano, CH-03), a novel bioreductive version of the clinically used lysine deacetylase inhibitor, panobinostat. NI-Pano was stable in normoxic (21% O2) conditions and underwent NADPH-CYP-mediated enzymatic bioreduction to release panobinostat in hypoxia (<0.1% O2). Treatment of cells grown in both 2D and 3D with NI-Pano increased acetylation of histone H3 at lysine 9, induced apoptosis, and decreased clonogenic survival. Importantly, NI-Pano exhibited growth delay effects as a single agent in tumor xenografts. Pharmacokinetic analysis confirmed the presence of sub-micromolar concentrations of panobinostat in hypoxic mouse xenografts, but not in circulating plasma or kidneys. Together, our pre-clinical results provide a strong mechanistic rationale for the clinical development of NI-Pano for selective targeting of hypoxic tumors.
Collapse
Affiliation(s)
- Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ewen D D Calder
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Deborah Sneddon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Maria L Odyniec
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ishna N Mistry
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jennifer Martin
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Lisa K Folkes
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
4
|
Colas K, Doloczki S, Kesidou A, Sainero‐Alcolado L, Rodriguez‐Garcia A, Arsenian‐Henriksson M, Dyrager C. Photophysical Characteristics of Polarity‐Sensitive and Lipid Droplet‐Specific Phenylbenzothiadiazoles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kilian Colas
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Susanne Doloczki
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Aikaterina Kesidou
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Lourdes Sainero‐Alcolado
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Aida Rodriguez‐Garcia
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Marie Arsenian‐Henriksson
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Christine Dyrager
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
5
|
Wang S, Wu X, Zhang Y, Zhang D, Xie B, Pan Z, Ouyang K, Peng T. Discovery of a highly efficient nitroaryl group for detection of nitroreductase and imaging of hypoxic tumor cells. Org Biomol Chem 2021; 19:3469-3478. [PMID: 33899896 DOI: 10.1039/d1ob00356a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is a pathological hallmark of solid tumors. Detection of hypoxia is therefore of great interest for tumor diagnosis and treatment. As a well-established biomarker of hypoxia, nitroreductase (NTR) has been widely exploited in the development of hypoxia-responsive fluorescent probes on the basis of its enzymatic activity to reduce nitroaryl groups. However, studies on the relationship between the nitroaryl structure and the probe performance for optimal probe design are still rare. Here we report a comparative investigation of nitroaryl groups and identification of the optimal nitroaryl structure for developing new fluorescent probes with extremely high efficiency in the detection of NTR and the imaging of hypoxic tumor cells. Specifically, we synthesized a series of resorufin-based fluorescent probes containing different nitroaryl groups, compared their fluorescence responses to NTR, and identified 2-nitro-N-methyl-imidazolyl as the optimal nitroaryl group that is much more efficient than the most widely used 4-nitrophenyl for NTR detection. The structure-performance relationship was then studied by theoretical molecular docking, revealing the unique features of 2-nitro-N-methyl-imidazolyl in binding and reaction with NTR. We further incorporated the 2-nitro-N-methyl-imidazolyl group into a near-infrared (NIR) hemicyanine fluorophore and developed a NIR fluorescent probe NFP-7 for the detection of NTR and hypoxic tumor cells. NFP-7 exhibits a strong fluorescence increase toward NTR in vitro with an ultrafast (within 40 seconds to fluorescence maximum) and ultrasensitive (0.2 ng mL-1 detection limit) response. NFP-7 has also been demonstrated for imaging the degree of hypoxia in live tumor cells and, more importantly, in a murine tumor model. Our study provides important insights into hypoxia probe development and new tools for hypoxia imaging.
Collapse
Affiliation(s)
- Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Boyu Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhixiang Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Tian X, Li Z, Sun Y, Wang P, Ma H. Near-Infrared Fluorescent Probes for Hypoxia Detection via Joint Regulated Enzymes: Design, Synthesis, and Application in Living Cells and Mice. Anal Chem 2018; 90:13759-13766. [DOI: 10.1021/acs.analchem.8b04249] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yue Sun
- Ministry of Education Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Pan Wang
- Ministry of Education Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Chyan W, Raines RT. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging. ACS Chem Biol 2018; 13:1810-1823. [PMID: 29924581 DOI: 10.1021/acschembio.8b00371] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic catalysis illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside therapeutic, diagnostic, and theranostic opportunities.
Collapse
Affiliation(s)
- Wen Chyan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
|