1
|
Belenov S, Mauer D, Moguchikh E, Gavrilova A, Nevelskaya A, Beskopylny E, Pankov I, Nikulin A, Alekseenko A. New Approach to Synthesizing Cathode PtCo/C Catalysts for Low-Temperature Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:856. [PMID: 38786812 PMCID: PMC11124439 DOI: 10.3390/nano14100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The presented study is concerned with a new multi-step method to synthesize PtCo/C materials based on composite CoxOy/C that combines the advantages of different liquid-phase synthesis methods. Based on the results of studying the materials at each stage of synthesis with the TG, XRD, TEM, SEI, TXRF, CV and LSV methods, a detailed overview of the sequential changes in catalyst composition and structure at each stage of the synthesis is presented. The PtCo/C catalyst synthesized with the multi-step method is characterized by a uniform distribution of bimetallic nanoparticles of about 3 nm in size over the surface of the support, which result in its high ESA and ORR activity. The activity study for the synthesized PtCo/C catalyst in an MEA showed better current-voltage characteristics and a higher maximum specific power compared with an MEA based on a commercial Pt/C catalyst. Therefore, the results of the presented study demonstrate high prospects for the developed approach to the multi-step synthesis of PtM/C catalysts, which may enhance the characteristics of proton-exchange membrane fuel cells (PEMFCs).
Collapse
Affiliation(s)
- Sergey Belenov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Dmitriy Mauer
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Elizabeth Moguchikh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Anna Gavrilova
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
| | - Alina Nevelskaya
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Federal Research Center “The Southern Scientific Center of the Russian Academy of Sciences” (SSC RAS), Federal State Budgetary Institution of Science, 41 Chekhova St., Rostov-on-Don 344006, Russia;
| | - Egor Beskopylny
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Ilya Pankov
- Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia;
| | - Aleksey Nikulin
- Federal Research Center “The Southern Scientific Center of the Russian Academy of Sciences” (SSC RAS), Federal State Budgetary Institution of Science, 41 Chekhova St., Rostov-on-Don 344006, Russia;
| | - Anastasia Alekseenko
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (D.M.); (E.M.); (A.G.); (A.N.); (E.B.); (A.A.)
- Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| |
Collapse
|
3
|
Islam MS, Shudo Y, Hayami S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Md. Saidul Islam
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yuta Shudo
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB) 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Kaewsai D, Hunsom M. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell. NANOMATERIALS 2018; 8:nano8050299. [PMID: 29734719 PMCID: PMC5977313 DOI: 10.3390/nano8050299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/29/2022]
Abstract
The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d-band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support.
Collapse
Affiliation(s)
- Duanghathai Kaewsai
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
| | - Mali Hunsom
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
- Associate Fellow of Royal Society of Thailand (AFRST), Bangkok 10300, Thailand.
| |
Collapse
|